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1A.1 Estimation of dense-gas viscosity.

a. Table E.1 gives T, = 126.2 K, p. = 33.5 atm, and p. = 180 x 10% g/cm-s

for N;. The reduced conditions for the viscosity estimation are then:
pr = p/pc = (1000 + 14.7)/33.5 x 14.7 = 2.06
T, =T/T. = (273.15+ (68 — 32)/1.8)/126.2 = 2.32

At this reduced state, Fig. 1.3-1 gives yu, = 1.15. Hence, the predicted viscosity
isp=pr/pe =1.15x180x107% = 2.07x10™* g/cm-s. This result is then converted
into the requested units by use of Table F.3-4:

p=2.07x10"*x6.7197 x 1072 = 1.4 x 107* lby, /ft-s



1A.2 Estimation of the viscosity of methyl fluoride.

a. CH3F has M = 16.04—1.008+19.00 = 34.03 g/g-mole, Tc = 4.55+273.15 =
277.70 K, p. = 58.0 atm, and V, = 34.03/0.300 = 113.4 cm®/g-mole. The critical

viscosity is then estimated as

fe = 61.6(34.03 x 277.70)1/2(113.4) 72/ = 255.6 micropoise
from Eq. 1.3-1a, and

fre = 7.70(34.03)1/%(58.0)2/3(277.7) 7Y/ = 263.5 micropoise

from Eq. 1.3-1b.

The reduced conditions for the viscosity estimate are T, = (370 4 273.15)/277.70 =
2.32, p, = 120/58.0 = 2.07, and the predicted u, from Fig. 1.3-1 is 1.1. The
resulting predicted viscosity is

p= prpe =1.1 x 255.6 x 107% = 2.8 x 10™* g/cm-s via Eq.1.3-1a, or
1.1 x 263.5 x 1075 = 2.9 x 10™%g/cm-s via Eq.1.3-1b.



1A.3 Computation of the viscosities of gases at low density.

Equation 1.4-14, with molecular parameters from Table E.1 and collision integrals
from Table E.2, gives the following results:

For O: M = 32.00, 0 = 3.433A, ¢/k = 113 K. Then at 20°C, xT/ec =
293.15/113 = 2.594 and Q, = 1.086. Equation 1.4-14 then gives

s v/32.00 x 293.15
(3.433)2 x 1.086

=2.02x107* g/cm-s

=2.02 x 107° Pas

=2.02 x 10~? mPa-s.

= 2.6693 x 10~

The reported value in Table 1.1-3 is 2.04 x 10~2 mPa-s.

For Np: M = 28.01, 0 = 3.667A, e/k = 99.8 K. Then at 20°C, /e =
293.15/99.8 = 2.937 and Q, = 1.0447. Equation 1.4-14 then gives

s v/28.01 x 293.15
(3.6672 x 1.0447

=1.72x107* g/cm-s

=1.72 x 107% Pa-s

= 1.72 x 10™? mPa-s.

1= 2.6693 x 10~

The reported value in Table 1.1-3 is 1.75 x 10~2 mPa-s.

For CHy, M = 16.04, o = 3.780A, ¢/k = 154 K. Then at 20°C, kT/e =
293.15/154 = 1.904 and Q, = 1.197. Equation 1.4-14 then gives

5 v/16.04 x 293.15
(3.780)2 x 1.197

=1.07x 107* g/cm's

= 1.07 x 107° Pa-s

= 1.07 x 102 mPa-s.

= 2.6693 x 10~

The reported value in Table 1.1-3 is 1.09 x 10~2 mPa-s.
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1A.4 Gas-mixture viscosities at low density.

The data for this problem are as follows:

Component M p, poise x 10°
1(Hy) 2.016 88.4
2(CCLF2) 120.92 124.0

Insertion of these data into Eq. 1.4-16 gives the foloowing coefficients for mixtures
of Hy and Freon-12 at this temperature:

@11 = @22 =1.0 . .
1 2.016 \ /* [ 88.4 \'/? /120.92\ /4]
Prp=—\{1+ 1+ | —=
NG 120.92 124.0 2.016
= 3.934
g, = L (1, 12092\ 1240\ ( 2016 1]
TR 2.016 88.4 120.92

= 0.0920

Equation 1.4-15 then gives the predicted mixture viscosities:

1= D= Yo = A= B := A+ B=

1—x Zxﬂ(blﬁ Z.’Eﬂ‘bzlg zl#]-/ 21 IEQ,U,Q/ ZZ Hmix X 10° Hobs,poise X 108
0.00 3.934 1.000 0.0 124.0 (124.0) 124.0

0.25 3.200 0.773 6.9 120.3 127.2 128.1

0.50 2.467 0.546 18.1 113.6 131.7 131.9

0.75 1.734 0.319 38.2 97.2 135.4 135.1

1.00 1.000 0.092 88.4 0.0 (88.4) 88.4



1A.5 Viscosities of chlorine-air mixtures at low density.

Equation 1.4-14 and Tables E.1, E.2 give the following viscosities at 75°F(=
273.15 4+ (75 — 32)/1.8 = 297.03 K) and 1 atm:

For component 1, (Clz), M; = 70.91, oy = 4.11510\, e1/k = 357K, hence,
kT /e1 = 297.03/357 = 0.832 and Q,; = 1.754, and

5 /70.91 x 297.03
(4.115)2 x 1.754

p1 = 2.6693 x 10~ =1.304 x 10™* g/cm-s = 0.01304 cp.

For component 2, (air), Mz = 28.97, 0 = 3.617;&, e1/k = 97.0K; hence, kT'/e1 =
297.03/97.0 = 3.062 and ©,, ; = 1.033, and

5 V/28.07 x 207.03
(3.617)% x 1.033

py = 2.6693 x 10~ =1.832 x 107* g/cm-s = 0.01832 cp.

Eq. 1.4-16 then gives the following coefficients for Eq. 1.4-15 at this temperature:

@112(1)22:1.0
- 12
B, = L (14 091\ 001304 2 r98.97\'/*
2= R 28.97 L 0.01832 70.91
= 0.5339
- 32
B, = L (142897 1/ L (001832 Y2 r70.91\'*
TR 70.91 0.01304 28.97
= 1.8360

Equation 1.4-15 then gives the predicted mixture viscosities:

zy = Y= Yo = A= B := A+ B =

1 -z Yegbis YzpPap zip/ Yy Tap2/ Yy Hmixep. X 10°
0.00 0.5339 1.000 0.0 0.01832 0.0183

0.25 - 0.6504 1.2090 0.005012 0.011365 0.0164

0.50 0.7670 1.4180 0.008501 0.006460 0.0150

0.75 0.8835 1.6270 0.011070 0.002815 0.0139

1.00 1.000 1.8360 0.01304 0.0 0.0130



1A.6 Estimation of liquid viscosity.

a. The calculated values for Eq. 1.5-9 at 0°C and 100°C are as follows:

T K
p, g/cm®
V= M/p, cm3 /g-mole
Afjvap,T;,, cal/g-mole= 897.5 x 18.016 x 252.16/453.59
AUyap 1,/ RT = 8989/1.98721/T
exp 0.408AU,.p 1,/ RT
Nh / v, g/cm-s
Predicted liquid viscosity, g/cm-s

273.15
0.9998
18.01
8989.
16.560
859.6

2.22 x 10™*
0.19

b. The predicted values for Eq. 1.5-11 at 0°C and 100°C are:

. TK
NR/V, g/cm-s
exp(3.8T4/T)

Predicted liquid viscosity, g/cm-s

Summary of results:

Temperature, °C

Observed viscosity, centipoise[=]g/cm-sx100
Prediction of Eq. 1.5-9

Prediction of Eq. 1.5-11

273.15

2.22 x 10~*
179.7
0.0398

0
1.787
19.
3.98

373.15
0.9584
18.80
8989.
12.120
140.5

2.12 x 1074
0.0298

373.15

2.12 x 104
44.70
0.0095

100
0.2821
2.98
0.95

Both equations give poor predictions. This is not surprising, since the empirical
formulas in Eqgs. 1.5-8 et seq. are inaccurate for water and for other associated

liquids.



1A.7 Molecular velocity and mean free path.

From eq. 1.4-1, the mean molecular velocity in Oy at 273.2 K is

. \/SRT B \/8 x 8.31451 x 107 x 273.2

_ 4
v % 33.00 =4.25 x 10* cm/s

From eq. 1.4-3, the mean free path in O; at 1 atm and 273.2 K is

RT 82.0578 x 273.2

A= =~ = =93x%x10"%cm
V2rd2pN  V27(3 x 10—8)2 x 1 x 6.02214 x 1023

Hence, the ratio of the mean free path to the molecular diameter is (9.3 x 10™%/3 x
107%) = 3.1 x 10* under these conditions. At liquid states, on the other hand, the
corresponding ratio would be on the order of unity or even less.






1B.2 A fluid in a state of rigid rotation

a. A particle within a rigid body rotating with an angular
velocity vector w has a velocity given by v =[w xr]. If the angular
velocity vector is in the +z-direction, then there are two nonzero
velocity components given by v, =-w,y and v, =+w,x. Hence the

magnitude of the angular velocity vector is b in Problem 1B.1(c).
b. For the velocity components of Problem 1B.1(c),

d
——l+—a—vi:0 and Z]y—o”v"=2b

ox dy ox dy

c. In Eq. 1.2-4, we selected only the linear symmetric
combinations of derivatives of the velocity, so that in pure rotation
there would be no viscous forces present. In (b) we see that the
antisymmetric combination is nonzero in a purely rotational motion.




1B.3 Viscosity of suspensions
Expanding the Mooney expression, we get (with €= ¢/¢ )

2 3
E.ﬁ:l.*. _ﬂ +__1_ _%_?_ +_}_ _i.ql_ +...
Uy 1-¢) 2 1-¢ 3 1-¢
=1+§¢(1+e+52+---)+%cpz(l+2e+---)+%¢3(1+---)+---

:1+.§¢+¢2 g§+§_1_ +¢3 12_5_+2§_1_+§.L2 +--.
2 8 2¢, 8 49, 20

The first two terms match exactly with the first two terms in Eq.
1B.3-1. We can make the third term match exactly, by setting

g§+§i=7.17 whence ¢, =0.618

8 29,

and the coefficient of ¢* becomes

125 25 1 5 1

+— +— =20.26
48 4 0.618 20.382

If we try ¢, = 0.70, the coefficients of ¢ and ¢> become 6.70 and 17.6
respectively. This gives a somewhat better find of Vand's data.



1C.1 Some consequences of the Maxwell-Boltzmann equation
a. The mean speed is

oo - oo _z2
Zo IO u’e /2KTdu_ 2kT fo e dg _2kT 5 [8kT
W7 Vo

oo —mu? - oo _g2 -
[, ute [2XT gy, m jo E2e74 dE m
b. First rewrite Eq. 1C.1-4 as

J'°° n e-mu,%/ixr du, f°°

- —c0 —o0

—mu? [2XT o .2
e/ du, [~ ey,
X oo _ 2 : oo _ 2/ ) oo _ 2

J’_ e mux/ZKTdux J‘ e muy/ZKTduy J‘—we muz/ZKTduz

The integral over u, in the numerator of the first factor is zero
because the integrand is the product of a factor "u," (an odd function
of the integration variable about u, = 0) and an exponential function

(an even function), and the range of integration extends equally far
in the positive and negative directions.

¢. The mean kinetic energy per molecule is

™ 2/
J'O u4e-—mu /ZKTdu
m —

oo 2 -
.[o y2e"mu [2KT du

okT [y e dE
mJygreag

N7

oojw

mu? =

m KT =

N[
Nof—
N
N

5

-
S

and is thus kT for each degree of freedom.

=11



1C.2 The wall collision frequency
When we change to dimensionless variables in the second
line of Eq. 1C.2-1, we get

e e e e

{zmr) Co 2B B 7)o

|

=12



1C.3 The pressure in an ideal gas
a. The dimensions of the quantities in Eq. 1C.3-1 are

S [=] I*

i [=] L/

At [=] ¢

m [=] M

f =] /ey )
dudu,du, [=] (L/t)’

Using these units, one finds that the expression on the right of Eq.
1C.3-1 has units of M/Lt* (which are the same as the units of force
per area).

b. Combining Egs. 1C.1-1 and 1C.3-1 we get

p= znm(zm) [l ue™ ”"+”""")/2KTdu du, du,

=2nm —2—:&—) ” :uﬁe-mui/zxr du. - I:e—mui/ZKT du, - e~ /KT gy
— 2nm %)(_71;]3/2 [F&2eEag [ ey |7 et dg

- 2o 2T LY ) ) ) =

I-13



1D.1 Uniform rotation of a fluid
a. For the special case that w =6 _w, we get

v=[wxr]=332 36,8 wx, = W(81€15Y +8,6,5%) = w(— 8,y + 8,x)

Then using Egs. A.6-1, 2, 13 and 14, we can get the velocity
components in cylindrical coordinates

v, =(v-8,)= w((——Sxy +8yx).8,)= w(-ycos 0 + xsin 0)
= w(-rsinOcos O + xcos Bsin O) =0

vy =(v-8y)= w((——Sxy +8yx)-89)= w((-y)(-sin 6) + xcos 0)
= w(rsinOsin O + r cos 6 cos B) = wr

Therefore, the angular velocity of every point in the fluid is v, /r =w,
which is a constant, and there is no radial velocity. This is the way a
rigid body rotates at constant angular velocity.

b. The vector operations are (using the abbreviated notation
of §A.9 and the Einstein summation convention)

w. 8, =€ W

imn“Y'm“in nmn m_0

(V-v)=0dv, = d,&,,,w,x, =€

1TmnTTmTTn

=E. . W 6:

{Vv}ij = {V[W X 1"]}1.], = ai‘(';jmnz’umxn jmn*Y'm~in gjmiZ,Um

=-{yyl.=-{yvl , .
—

—

A ThA canmeTtn Alicen 20 A2 ifp e L0 - OV 22 0 - -t € ____



1D.2 Force on a surface of arbitrary orientation.

a. We can specify the surface area and the orientation of the
surface of AOBC as ndS. To project this surface onto the yz-plane,
we take the dot product with 6, so that the area of AOBC is
(n-8,)ds. |

b. The force per unit area on three triangles perpendicular
to the three coordinate axes are

Force on AOBC=6,7,, +8,7,, +9,7,,
Force on AOCA=98,7,, +8 1, +8. 7,
Force on AOAB=d,7,, +6,7,, +6,7,
¢. Force balance on the volume OABC is then

n,dS = (8,7, +8,7, +8,7, )(n-8,)dS

XXX z°7Xz

+(8,7,, +8,7,, +8,7,, )(n-8,)dS

xyx

+(8,7, +8,m, +8,7, )(n-8,)dS

x?¥zx
or

T, = [n°6x6xnxx]+[n'8x6y”xy]+[n'sxsznxz]
+[n-8,8,7,,|+[n-8,8,7,|+[n-8,5,7,]
+[n-8,8,7,]+[n-8,8,7,]+[n-83, 7]

zoyzy z27z°7zzZ

=;§j)[n-8i8j7zi]-]=[n-n]

-15



2A.1 Thickness of a falling film.

a. The volume flow rate w/p per unit wall width W is obtained from Eq.
2.2-25:

w  vRe (1.0037 x 107%)(10)
oW 4 4
Here the kinematic viscosity v for liquid water at 20°C was obtained from Table 1.1-

2. Since 1 ft=12x2.54 cm, 1 hr =3600 s, and 1 gal=231.00 in3 x (2.54cm/in)3=3785.4
cm?® (see Appendix F), the result in the requested units is

= 2.509 x 1072 cm?/s

= = 0.02509 cm?/s x

2
W gal/cm? x 30.48 cm/ft x 3600 s/hr

1
3785.4
=0.727 U.S. gal/hr-ft

b. The film thickness is calculated from Egs. 2.2-25 and 2.2-22 as
v w \Y?
6= —
<g cos 3 PW)

B 3u LR,_C 1/3
" \gcosB 4
_ (3 x 1.0037 x 10~?

(980.665)(1.0) 2209
= 0.00361 in.

1/3
10-2)) = 0.009167 cm



2A.2 Determination of capillary radius by flow measurement.

- ‘Assuming the flow to be laminar, we solve Eq. 2.3-21 for the capillary radius:

R 4 8uLlw  ,/8vLw
 \7pAP N 7AP

Insertion of the data in mks units gives

R — a/8(403 x 107°)(0.5002)(2.997 x 10~?)
B (3.1416)(4.829 x 105)

— v/3.186 x 10-13
=751x107*m="7.51x10"% cm

As a check on this result, we calculate the corresponding Reynolds number:

Re:D(vZ)p: 4w _ 2w
7 7Dp  wRvp

2 ©(2.997 x 107%)

== ' = 66.0
7 (751 x 10-1)(2.03 x 10-5)(0.0552 x 10°) _ °

This value supports our assumption of laminar flow. Since the entrance length,
L. = 0.035DRe = 0.35 cm 1is less than L, the entrance-effect correction to R is at
most of the order of |[1—(L./L)]'/* —1|, or 0.2 percent of R in the present example.

Difficulties with this method include: (1) Inability to account for departures
from a straight, circular cylindrical wall geometry. (2) Inability to account for in-
advertent spatial and temporal variations of temperature, hence of the fluid density
and viscosity.

A simpler method is to measure the length L and mass m of a small slug of
liquid mercury (or another liquid of known density) injected into the tube, and
calculate the mean radius R of the slug as (m/[p7L])!/2, on the assumption that
the slug is a right circular cylinder. This method allows comparisons of mean R
values for various intervals of the tube length.



2A.3 Volume rate of flow thrugh an annulus.

Assuming the flow to be laminar, we use Eq. 2.4-17 to calculate the volume
flow rate w/p, with the specifications

k= 0.495/1.1 = 0.45
p = 136.8 (Ib,, /ft-hr)(1 hr/3600s) = 3.80 x 1072 lby, /ft-s

(Po — P1) = (5.39 psi)(4.6330 x 10° poundals/ft?/psi) = 2:497 x 10* 1b,,/ft- - -s?
R=11in.=11/121t

Here Appendix F has been used for the conversions of units. With these specifica-
tions, Eq. 2.4-17 gives -

w 7)(2.497 x 10*)(1.1/12)* 4 1 — (0.45)%)?
i : )((8)(3.80 X 10)—(2)(2/7)) [(1 - (045) - ¢ ln(§/0.4g'))) }
1- 0.2025)2}
In(1/0.405)
— (0.6748)[0.1625] = 0.110 £t3 /s

= (0.49242) [(1 —0.04101) —

As a check on our assumption of laminar flow, we calculate the Reynolds num-

ber:
_2R(1 = k)(v)p 2w

p ~ 7Ru(l + K)
_ 2(0.110)(80.3)
 (3.1416)(1.1/12)(3.80 x 10—2)(1.45)

This value is well within the laminar range, so our assumption of laminar flow is
confirmed. '

Re

=1110




2A.4 Loss of catalyst particles in stack gas.

a. Rearrangement of Eq. 2.6-17 gives the terminal velocity

ve = D*(p, — p)g/18u

in which D is the sphere diameter. Particles settling at v¢ greater than the centerline
gas velocity will not go up the stack. Hence, the value of D that corresponds to
vy = 1.0 ft /s will be the maximum diameter of particles that can be lost in the stack
gas of the present system.

Conversions of data to cgs units give

vy = (1 ft/s)(12 x 2.54 cm/ft) = 30.48 cm/s
p = (0.045 1b,, /ft3)(453.59 g/lbm)((12 x 2.54)73 ft2 /cm?®)
=72x10"* g/cm?

18,uvt (18)(0.00026)(30.48)
Dumax =4 p)g (1.2 — 7.2 x 10—4)(980.7)

1.21 x 10_4 =1.1 x 1072 cm = 110 microns

Hence,

b. Equation 2.6-17 was derived for Re<< 1, but holds approximately up to
Re=1. For the system at hand,

Dup (1.1 x 1072)(30.5)(7.2 x 107%)

Re=— "= (0.00026)

=0.93

Hence, the result in a. is approximately correct. Methods are given in Chapter 6
for solving problems of this type without the creeping-flow assumption.

2-4



2B.1 Different choice of coordinates for the falling film problem
Set up a momentum balance as before, and obtain the
differential equation

%:pgcosﬂ

Since no momentum is transferred at X =6, then at that plane
T, =0. This boundary condition enables us to find that
C, = -pgd cos B, and the momentum flux distribution is

Tz, = —Pg0 COS ,B(l - %)

Note that the momentum flux is in the negative x-direction.
Insertion of Newton's law of viscosity 7, = —u(dv, /d% ) into

the foregoing equation gives the differential equation for the velocity
distribution: '

dv, _ pgdcosf (1—5)
ax u , o

This first-order differential equation can be integrated to give

St

The constant C, is zero, because v, =0 at X =0.

We note that X and x are related by ¥/8 =1-(x/5). When this
is substituted into the velocity distribution above, we get

S e R et

which can be rearranged to give Eq. 2.2-18.

9.5



'2B.2 Alternate procedure for solving flow problems
Substituting Eq. 2.2-14 into Eq. 2.2-10 gives

d dv,\ d*v,  pgcospf
dx( a dx)—pgcos[j’ e T u

Integrate twice with respect to x (see Eq. C.1-10) and get

v, = _P3C0SP o Cix+C,

2u

Then use the no-slip boundary condition that v, =0 at x =§, and the
zero momentum flux boundary condition that dv,/dx=0 at x=0.
The second gives C, =0, and the first gives C, =(pgcosB/2p)8.
Substitution of these constants into the general solution and
rearranging then gives Eq. 2.2-18.



2B.3 Laminar flow in a narrow slit
a. The momentum balance leads to

d (P -P,)

— T, and 7, -—~(£(-)—_—z"~>i)x+c1
dx L

N du, . :
Substitution of Newton's law 7, =-u 7 % into the above gives
x

dvz____(@o ?L)x_{__(_:_l_ or Uzz—(?o ﬂaL)x +Qx+C2.

Use of the no-slip boundary conditions at x =B gives the expres-
sions in Eq. 2B.3-1 and 2. One can also see that C,; = 0 directly, since

we know that the velocity distribution must be symmetrical about the
plane x = 0.
b. The maximum velocity is at the middle of the slit and is

®,-®,)B’ 2
Uy max = ( g L) and hence Y =1- (i)
’ 2uL v B

z,max

The ratio of the average to the maximum velocity is then

(v,) _ .[JVJ.?B[l—(x/B)Z ]dxdy _ _f;(l— §z)d§
Uz, max | _[;N dexdy j;d(g

-(1-4)-3

¢. The mass rate of flow is

w=p(2BW)(0,) = p(2BW)(2) (® ;:LL)BZ _ % (Po - 3;2 )oB*W

d. In Eq. 2.5-22, set both viscosities equal to u. set b equal to
B, and multiply by BWp.



2B.4 Laminar slit flow with a moving wall ("plane Couette flow")

Start with the velocity distribution from part (a) of Problem
2B.3 (in terms of the integration constants). Determine C; and C,
. from the boundary conditions that v, =0 at x=-B, and v,=V at
x = B. This leads to

e I 1

This expression can be differentiated with respect to x and then
Newton's law of viscosity 7,, =—p(dv,/dx) can be used to get the

expression for the stress tensor. Notice that the velocity distribution
' is no longer symmetric about the midplane, so that C; #0.




2B.5 Interrelation of slit and annulus formulas
From Eq. 2.4-17 we get

suL ) o (1--e7)
w(n(?o—p;L)R‘*pJ_(l_(l_g) )+ In(1-¢)

212
:(1—1+46—662+483—84)+ (1 1+jz _6%84_',
=(48—-6g2+4g3_84)_ (482 45 +£)

e+ie?+ie’ +1et+.
=(4e-6¢” +4” - £*) - (46— 6¢” +%83 lett.. )

This gives, finally, a result in agreement with Eq. 2B.5-1

| n(®y - P, )R*p
0= ME PR (g0 ger, )



2B.6 Flow of a film on the outside of a circular tube
a. A momentum balance on the film gives

d(rt,,)

d( do,
———==+pgr =0 or u—i|r

dr

dr dr ) +pgr=0

The latter may be integrated to give

2

v, i +CInr+C,
4u

Next use the boundary conditions that at r =R, v, =0 (no slip) and
that at r=4aR, dv,/dr =0. When the integration constants have been
found, we get for the velocity distribution

2 2
v, = p3R 1~(L) +2a2In~
4 R R

b. The mass rate of flow in the film is then
2w paR a
w=["[ pvzrdrde =27R%p[ v, &d&

in which a dimensionless radial coordinate £=r/R has been
introduced. Then

w:Mjf(1—§2 +2a* In&)EdE

2u
np*gR* a
_ Pzi (%52—%54"'2‘12[—‘}152*'%521115])1
2 p4
=ﬂ)——g—1—z———(—l+4a2 ~3q4 +4a4]na)
8u

c. If weset a=1+ € (where ¢ is small) and expand in powers
of € using §C.2, we get
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2,4 2,R4,.3
w=TP8R (15,05, o c4)) - 28R
8u 3u
This is in agreement with Eq. 2.2-21 if we make the identifications

W =27R and 6 =¢R (and furthermore consider only the case that
cosfB=1.

2-11



2B.7 Annular flow with inner cylinder moving axially

a. The momentum balance is the same as that in Eq. 2.3-11 or
Eq. 2.4-2, but with the pressure-difference term omitted. We can
substitute Newton's law of viscosity into this equation to get

_“d&=£1.,whence vz=——C—11nr+C2 or U—z=—D11n‘r“+D2
dr r M Yo R

That is, we select new integration constants, so that they are
dimensionless. These integration constants are determined from the
no-slip conditions at the cylindrical surfaces: v,(kR)=v, and
v,(R)=0. The constants of integration are D, =0 and D, =-1/Ink.
This leads then directly to the result given in the book.

b. The mass rate of flow is

v,R?

w=.[2”IRV PV, rdrd6=2np j (In&)EdE
_znpvoR ( E*IngE-1¢ )|K=2npvli’1—112(—%1<21nx—;11-(1—1<2))

which is equivalent to the answer in the text.
c. The force on a length L of the rod

af  d
P ()

which gives the expression in the book.
d. When we replace « by 1- ¢ and expand in a Taylor series,
we get

R
xRd6dz = 2mkRLuv, (11/nKK )

r=kR

_ 1 _ 27aLlu)v, 1. 1.2
P_an(—u)vo-—(e+%ez+—13-e3+%g4...)_ € (1_'2'8—1'2'8 )

To get this last result one has to do a long division involving the
polynomial in the next-to-last step.
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2B.8 Analysis of a capillary flowmeter

Designate the water by fluid "I" and the carbon tetrachloride
by "II". Label the distance from B to C as "J". The mass rate of flow in
the tube section "AB" is given by

ZU= 7[(?[1 —?B)R‘lpl _ ﬂ[(pA —pB)+pIgh:R4pI

Since the fluid in the manometer is not moving, the pressures at D
and E must be equal; hence

Pa+poi8h+p8] +p08H =pp +0,8] + oygH

from which we get
pa—ps+pigh=(py-p1)sH
Insertion of this into the first equation above gives the expression for

the mass rate of flow in terms of the difference in the densities of the
two fluids, the acceleration of gravity, and the height H.
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2B.9 Low-density phenomena in compressible tube flow
When we replace no-slip boundary condition of Eq. 2.3-17 by
Eq. 2B.9-1, we get

C. = (Po - PL)R2 + (Po —PL)RC
2 4ul 2uL

so that the velocity distribution in the tube is

M{l(_)}w
4uL R 2uL

Next we write the expression for w, but consider only the flow
through a length dz of the tube:

w= f _[p(z)v (r,z)rdrd0 = ZnRZ[R ]f §de
gl

where we have introduced the ideal gas law, with R, being the gas

constant (we use a subscript g here to distinguish the gas constant
from the tube radius). We have also introduced a dimensionless
radial coordinate. When we introduce the velocity distribution
above, we get

R MVA TG P
“" (RgTJI‘)( P dz)[(l A }gdé

R M) (. 4
" 8u [RgT]( pdz)(“ R;:)

This is now integrated over the length of the tube, keeping mind that
the mass flow rate w is constant over the entire length

L . aRY M \wmf . 4
‘[OWdz___g—ﬂ_{I_{_f) Po(p+——]{— dp
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_aR* [ M \po-pi | 44
- 8[.1 (RgTJ( 2 + R (pO PL)

This gives

w= ﬂ(Po-PL)R“( M J(POWL +4§0)

guL  \RT)\ 2 R
_ 7(Po ~ LR [ PavgM 1420
SuL RT )" Rpog

which leads then to Eq. 2B.9-2.



2B.10 Incompressible flow in a slightly tapered tube
a. The radius at any downstream distance is

R(z)=Ry +(R; - Ry)(z/L)

b. Changing the independent variable proceeds as follows:

e nR“p(_d’(P)(dR) _ nR"p(__d’d")(RL —Rg) |
8u dR )\ dz 8u dR L

c. First we rearrange the equation in (b) to get

_d%": Suw L 1
dR \ np \ R, -R, ) R*

Then we integrate this equation to get

_I:Ld@:(Byw)( L )
0 o N\ R, —R,

whence we can get the pressure difference in terms of the mass rate
of flow

P _p - 8HwL R -R®
° "1\ 370 \ R,-R,

R, 1
Jx. ~7dR

Next we solve to get the mass flow rate

R R g )

8uL R®>-Ry 8uL Ry R®-Rj®

This is the result, with the first factor being the solution for a straight
tube, the second factor being a correction factor. It would be better to
write the correction factor as "1-X ", so that the quantity X gives
the deviation from straight-tube behavior. The quantity X is then
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3 Ry-R, _1_3[1_(RL/RO)] 1_3[1_(RL/R0)](RL/RO)3

X:I—Rg R-Ry® ~ (Ry/R.) -1 ) 1-(Ry /Ry )’
1 ?’(RL/RO)3 ___1+(RL/R0)+(RL/R0)2_3(RL/R0)3
. 1+(RL/RO)+(RL/RO)2__— 1+(Ry /Ro) +(Ry/Ro)”

which then leads to the desired result in Eq. 2B.10-3.
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2B.11 The cone-and-plate viscometer

a. In a parallel-plate system with rectilinear flow, the
velocity distribution is just v, /v, =y /b, where b is the plate spacing
and v, is the velocity of the upper plate. We now make the following
correspondences between the parallel-plate system and the cone-
plate system (using 6 as the usual variable in spherical coordinates
measured downward from the z-axis, and w as the variable
measured upward from the plate surface):

U, 0, V> Qr; besrsiny, yorsiny=ry=r(ir-0)

When this correspondence is made, Eq. 2B.11-1 results.
b.  From Eq. B.1-19, we get for the force per unit area in the
¢-direction on a face perpendicular to the -direction

sinf 9 [ Y, 1 9v, 19(Qr(in-0)
T9¢ =—U - =-U-——=-U——] ————F
r dO\sind v

Here we have used the fact that the angle between the cone and
plate is so tiny that 6 is very nearly 37 so that sin 6 is very close to

unity. ‘ .
c. The torque is obtained by integrating the force times lever
arm over the entire plate area:

27 (R HQ ) (R pQ (R’
T, =[], (re¢ -r) 9=”/2rdrd¢== 2”(7,,:)-[0 ridr =2n(w—0)(?)

which leads to Eq. 2B.11-3.

2-13



2B.12 Flow of a fluid in a network of tubes

At A the pipe splits into three pipes, and at the next set of
junctions the fluid flows equally in six pipes, and then at the next set
of junctions the fluid flows back into three pipes, and finally at B the
fluid is all returned to a single pipe. Call the modified pressure at the
junctions where three pipes split into six pipes ®; , and that where
six pipes join to form three pipes ®,_,,.

Then in each of the first set of three pipes

®,-P, . )R*
w_ (P4 P36 )R%p or ®,-P,, = 8.ULZU
3 SuL 3nR*p
In each of the batch of six pipes
®, - P, ;)R*
L= 7t( i 6_)3) P or Py —Poys= SMLZU
6 SuL 67R*p
and in each of the final batch of 3 pipes
w_ (P, —P5)Rp or ®  _p. - BuLw
= 63~ B = 3
3 SuL 3nR*p

When all the pressure differences are added together, the unknown
quantities ®,_, and ®,_ , cancel out, and we get

®,-%®,)R*
'PA—'PB=8'u€w(§) or w=37‘£( 4 B) P
nR*p\ 6 20uL

pigh|



2C.1 Performance of an electric dust collector

a. First we solve the problem of the vertical motion of the
particle as it falls under the action of the electromagnetic field. The
equation of motion for the particle (without gravitational
acceleration or Stokes drag) is

2
eG-—-miTx
dt

This equation may be integrated with the initial conditions that
x=xyand dx/dt=0 at t=0, to give

8t
2m

.__xo

From this we can get the time ¢, required for the particle to fall to
Xx=-B:

.. 2m(B + x,)
T

Next we look at the horizontal motion. From Eq. 2B.3-2 and
the expression for x(t), we find that (with v,, = (p, — p, )B*/2uL

dz _ x| dz _ %o — (e82/2m)\’
ERNIE P YR

This may be integrated to give

, 2 2m2.4
L:f;dz:vmf;fl:l—glz‘(xg—xoeat +€ &t )dt:l

m 4m?
- x.e8t2 282
_(Po—p1) (Bz_xg)tf+ 0" 2f
oul. |V 3m  20m



Next, square this expression and then insert the expression for ¢,
above to get

2 _ 2(Po —PL) 2m(B+xO) _ |
[*= 155 1/ & (3B—2x,)(B+x,)

Then, in order to remove the radical, we square this, thereby getting

PRV
L = 2P (38 25, (B + o)’

Next, we set dL*/dx, equal to zero, and this yields 4 values for x,:

1B, 2B, B, and B. It is only the first of these that is physically

acceptable. When that value is put back into the expression for L, we
get finally

min

_[12(py - p,mB° "
35 ules
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2C.2 Residence-time distribution in tube flow

a. A fluid element at a radius r within the tube will require a
time ¢ to reach the tube outlet

L _ L
0:(r) v, [1-(1/R)’]

t(r)=

All the fluid with a radius less than r will have left the tube at this
time. Hence the fraction of the flow that will have left the tube is

27 or

F(t)=".° OvzrdrdH=2 V()
2w ¢R R R
jo jo v,rdrd0

When the first equation is solved for (r/R)” and substituted into the
expression for F(t), we get

s (e ()

b, The mean residence time is then obtained by solving the
last equation in (g) for t. and substituting into the Eq. 2C.2-1:

L J~1 dF — 2L _ L
Umax Ov1-F Umax <Uz>

t, = | tdF =

2-1L



2C.3 Velocity distribution in a tube
The derivation in §2.3 is valid up through Eq. 2.3-15. If the

viscosity is dependent on the radial coordinate, however, Eq. 2.3-16
is inappropriate. Instead we get

0 :_(?O‘PL)J* r
i 2L Ou(F)

dr +C,

Application of the no-slip boundary condition at the tube wall gives

(R0~ %)
2L

0=- J-R r dr +C,

()

This may be solved for the integration constant, and the velocity
distribution is then

(Po-P )k 7 (ﬁpwgwl 7
dar or v, = d
I’u(r") 2L Lu@)y

v, =
2L

This is the same as Eq. 2.3-18 if the viscosity is a constant.
Next we get an expression for the average velocity

jznjo v, rdrd6

. jdd@
_(P-%,)

<z>_

R2 '[0 v, rdr = 2fovzydy

2 —
dyydy =30 LI= (I [V ydydy
II )yyy - J@dwkyyy
(ﬂp@gwl.y 2

= T )

'u(y)

v, _ J.;(?/.“)dy-
() [(7° /)iy

Then we find the dimensionless ratio
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2C.4 Falling-cylinder viscometer

a. Equation 2.4-2 is valid for this problem, but the pressure
difference is not known. When Newton's law of viscosity is
substituted into Eq. 2.4-2 we get

v, =—(ﬂ°° —’(PLJrZ—Cllnr+C2

4ul

The two constants of integration and the (unknown) pressure
difference can be obtained from two boundary conditions and a
mass-conservation condition: At r=«R, v, =-v,; at r=R, v, =0;

and I()z ”ij v,rdrd® = m(kR)* v,. This states that the fluid displaced by

the falling cylinder must be compensated for by a net motion upward
through the annular slit. These three unknown constants may be
obtained from these conditions (lengthy!) and the result is

0, (1- £%)-(1+ K*)In(1/€)

v, (1—K2)—(1+K2)1n(1/1()

b. The force acting downward on the cylindrical slug of

height His (p, — p)g - #(kR)* H. The difference in the pressures acting
on the top and bottom of the slug is an upward force

(®y—®y) m(kR)* = —-j:(d’fP/dz)dz - T(kR)?
4v,H - n(kR)?
R?[(1-x?)-(1+x*)In(yx)]

In addition, there is an upward force associated with the frictional
drag by the fluid

2n(kR)H(-7,,)|,

dv,
=kR = 2TC(KR)H“( dr )r =

- ZnKvoHlJ{ (=) (1(: +KKZ)1/K(1/ K)J

2-%



When these are equated and the result solved for the viscosity, the
- expression in Eq. 22C.4-2 is obtained.
c. Next put k=1-¢, and expand in powers of €, keeping

terms up to £°. Use §C.2, and obtain Eq. 2C.4-3.
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2C.5 Falling film on a conical surface

4. A mass balance on a ring of liquid contained between s and
s+ As gives

(27s(sin B)S(s)(v))|. ~ (27s(sin B)S(s)(0))| ,, =0

Letting As— 0O then gives

d d |
%(56(0)) =0  whence, from Eq. 2.2-20 35(563) =0

Equation 2.2-20 is valid strictly for a flat plate with constant film
thickness, but we apply it here approximately to a different
geometry.

b. When the equation in () is integrated, we get s6° =C, in
which C is an integration constant. This constant is determined by
requiring that the mass flow down the conical surface be the same as
that flowing up the central tube (i.e., w). We hence write (width of
film) x (thickness of film) x (mass flow rate), and then use Eq. 2.2-20:

13 2/3
w = (27ssinB)- 8 - p(v) = (Znssinﬁ)-(%) ,p(Pg(C/;)u cosﬂ)

From this we get C;

C= 3uw _ 3uw
(27sinB)-(p°gcosB) mp*gsin2f

The film thickness as a function of the distance down the cone from
the apex is thus

5= 3uw
np*gssin2f
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2C.6 Rotating cone pump

a. Inner cone not rotating.
For sufficiently small values of B, the flow will resemble very much
that for a thin slit (see Problem 2B.3), for which the mass rate of flow
is given as the answer to part (b). This formula may be adapted to the
flow in the annular space of height dz. as follows, if the inner cone is
not rotating and if the gravitational force is not included:

g(_gg) B*(27zsin 6)p
3\ dz L

o~

where we have made the identification (p, —p,)/L— —dp/dz and
W — 27r =27zsin 0. Across any plane z = constant, the mass flow

rate will be a constant. Hence the above equation can be integrated
to give

P2 3  uw (L dz 3  uw L,
(P gp = 4z . = In=2
n P 475B3psin6'[Ll . O P TR T B sine L

b. Effect of the gravitational force and the centrifugal force
The result in (#) may be modified to include the effect of gravitational
acceleration g and the angular velocity Q of the inner cone.

The gravity force in the z-direction (per unit volume) is given
by Fypy,, = —pg cos . The centrifugal force (per unit volume) acting in

the middle of the slit will be, approximately, F, =p(3Qr)*/r

=1 pQ2zsin B, where r is the distance from the centerline of the cones
to the middle of the slit. The component of this force in the z-

direction is then F, , = 10Q%zsin’ B. Then the first equation in ()

can be modified to give

w = %(—%— +1pQ%zsin’® B —pgcosﬁ)

B®(2mzsin B)p
L

This equation can be integrated to give



47nBpsi 2 2
w= 3:’111([2?;}?) [(Pl "Pz)*’ (gPQ sin’ B)(Lzz - Ll)‘(PgCOSﬁ)(Lz - Ll)]

Many assumptions have been used to get this solution: (1) laminar
flow (turbulent flow analog is not difficult to work out); (2) curvature
effects have been neglected (correction for this is easy to do); (3)
entrance effects have been ignored (this can probably be handled
approximately by introducing an "equivalent length"); (4) instanta-
neous accommodation of velocity profiles to the changing cross-
section (it would be difficult to correct for this in a simple way).
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2C.7 A simple rate-of-climb indicator

a. Consider two planes of area S parallel to the earth's
surface at heights z and z+ Az. The pressure force in the z-direction
acting on the plane at height z and that acting at the plane at height
z + Az will be just the mass of air in the layer of height Az:

Splz _Sp|z+Az :pgSAZ

Division by SAz and then letting Az— 0 gives the differential
equation

dp _ _ dp _ | M
dz pgor dz [RgT]g

which describes the decrease in the atmospheric pressure with
increased elevation; here R, is the gas constant.

b. Let p; be the pressure inside the Bourdon element and p, be
the pressure outside (i.e., the ambient atmospheric pressure). We
now write an equation of conservation of mass for the entire
instrument:

”(Pi _Po)R4 .V d ”(Pi _Po)R4

—1m :-—w'V—d—p— p —p,; =
tot o’ dt 1 8,LlL avg’ dtpz 8IUL

dt pavg |

Here m, is the total mass of air within the system (Bourdon element
plus capillary tube), w, is the mass rate of flow of the air exiting to
the outside, p; is the density of the air inside the Bourdon elements,
and p,,, is the arithmetic average of the inlet and outlet densities

within the capillary tube (see Eq. 2.3-29). The third form of the mass
balance written above has made use of the ideal gas law,
p=pR,T/M.

If we neglect changes in the arithmetic average pressure p,,,
and use the abbreviation B= nR4pan /8,uLV, we can integrate the
mass balance above and get

p,=e ™ (f Bp,e™tdt + C)
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To get p,(t) we make use of the fact that there is a constant upward
velocity, so that

OAt

dﬂ_é&fl..z_ (Po ]g v, ——Apo whence Po =P,€

dt  dzdt |RT

Then the mass-balance equation becomes

Bpf,) _ -
(J‘Bpo -At, Btdt+c) B—AeAt+Ce Bt

Determine the constant of integration, C, from the initial condition
that p? =p? att = 0. Then

0 Be—At _Ae—Bt
pi :po

and P__.pi_poz A (1_6—(B-A)t>
B-A P, B-A

In the limit that t — <, we get fir B>>A

A_v,Mg 8VuL

P— 1
B R, T 7R%p,,

Hence for p, = p,,,, the gauge pressure is

L 8,uL) MgV
Pi po_vz(n_R4 (RgT

Hence the pressure difference approaches an asymptotic value that
varies only slightly with altitude.
¢. To get the relaxation time, note that

P=B—I_4A—(1—e_(B_A)) B>>A P (1 —Bt)

whence
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PP _ b _ gt 5o that bt === —S‘LZLV
P B R"Payg

L= =)

It is necessary to have t
assumption that B>>A.

<< 100 to insure the plausibility of the

rel
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2D.1 Rolling-ball viscometer

The rolling-ball viscometer consists of an inclined tube
containing a sphere whose diameter is but slightly smaller than the
internal diameter of the tube. The fluid viscosity is determined by
observing the speed with which the ball rolls down the tube, when
the latter is filled with liquid. We want to interrelate the viscosity and
the terminal velocity of the rolling ball.

The flow between the sphere and the cylinder can be treated
locally as slit flow (see Problem 2B.3) and hence the only hydro-
dynamic result we need is

dp _ 12u(v,) *)
dz o2

But we must allow the slit width o to vary w1th 0 and z. From the
figure we see that

R*=(R-7)*+(r'+0)* =2(R-7)(r"+ 0)cos O

where 7’ =+r* —z%. Solving for o we get

o=~1"+(R~1)cos 0 +Ry1+[(R~1)/R]*(~sin? 0)

The second term under the square-root sign will be very small for the
tightly fitting sphere-cylinder system and will hence be neglected.

Furthermore we replace Vr? —z* by VR? —z* and add compensating

terms
~VR? - 22 +(\[R2 - 72 -\/rz_zz)
=(R-7)| cos 6+
R-r
=(R—r)_cos(9+R_m+(R—7’)—%(R—r)(z/R)2...:I
R-r

=~(R-r

o

(cos@+1)+

R—\/RZ—ZZ]
R-r



LY 2
=2(R—r)(coszQ+R_ RT -z ]
2 2(R-r)

The omission of the term containing (z/R)* and the higher-order
terms is possible, since the greatest contribution to the viscous drag
occurs at the plane z = 0, and hence less accuracy is required for
regions of larger z. Note that the above result gives correctly 6=0
atz=0,0=m,and 0=2(R-r)atz=0, 6=0.

Next we assert that dp/dz will be independent of 0, which is

probably a good approximation. Then according to (*) (v,) must
have the form

(v.)=B(z)0*  (**)

Next, the volume rate of flow across any plane z will be

Q= f::(vz )o(6,z)Rd6 = RB(z)fZ[o(@,z)fdG
=8RB(z)(R~r)’ jf;’[cosz 19+ a]3d9 =8RB(z)(R-7)’I(a)

in which a =(R-VR?*-2z%)/2(R-7).

The volume rate of flow Q at all cross-sections will be the
same, and its value will be, to a very good approximation Q = 7R*v,,
where v, is the translational speed of the rolling ball. Equating the
two expressions for Q gives

Ry,
4z(R-r)’I(c)

B(z) = (***)

Combining (*), (**), and (***) we get

dp __ 3mpRo,
dz 2(R-r)’I(c)

The total pressure drop across the slit is then
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AP=J‘+R% ~2 wdp dz

9z 4
Rz 0 dzda

into which we have to insert dz/dc . Virtually no error is introduced
by making the upper limit infinite. From the definition of «

=-4(R-r)’a® +4R(R-r)a

The first term on the right is smaller than the second, at least for
small z. Then dz=R(R-r)da/+a, and the pressure drop
expression becomes (with £ = o)

Ap=2+R(R :ZZ L do=4R(R- rj”dpdg
3MUv,R (e 37z,quR3 2
= 4R(R - STUGR
( r) 2(R-1’)3 ,[0 1(52) )5/2 ]

T 2(R-

where

ol e A p_ 1 V2|
J=2f 1(52)d§ 3[@ ﬁ(m+2) } 0.531

The pressure drop multiplied by the tube cross-section must,
according to an overall force balance, be equal to the net force acting
on the sphere by gravity and buoyancy

47R%(p, - p)gsin B = 7R*Ap

where p, and p are the densities of the sphere and fluid respectively.
Combining the last three results gives the equation for the viscosity

4 R¥(p, - )8smB(R r)”
9nf (N R
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2D.2 Drainage of liquids
a. The unsteady mass balance is

2 (p5W) = (o(o. W)

_~(o(v, )W)

z+Az

Divideby pWAz and take the limit as Az— 0, to get Eq. 2D.2-1.
b. Then use Eq. 2.2-22 to get Eq. 2D.2-1:

95 _ _pg 98° _ pgd® 98
ot 3u dz u oz

which is a first-order partial differential equation.
c. First let A=./pg/u, so that the equation in (b) becomes:

JA ., 0A
oa_ N2
ot 0z

Inspection of the equation suggests that A =[z/t, which can be seen
to satisfy the differential equation exactly. Therefore Eq. 2D.2-3
follows at once. This equation has a reasonable form, since for long
times the boundary layer is thin, whereas for short times the
boundary layer is thick.



3A.1 Torque required to turn a friction bearing.

Equation 3.6-31 describes the torque required to turn an outer cylinder at an
angular velocity §},. The corresponding expression for the torque required to turn

an inner rotating cylinder at an angular velocity §; is given by a formally similar
expression,

. 1‘82
T, = 4npS R*L (1 )

— K2
derivable in like manner from the corresponding velocity profile in Eq. 3.6-32.

The specifications for this problem (converted into SI units via Appendix F)
are:

1.000
1.002

K2 0.996012
= 249.
(1 - ,g?) 0.003088 ~ 2 0°

g = (200 cp)(10~2 kg/m-s/cp = 0.200 kg/m-s
Qi = (200 rpm)(1 min/60 s)(27 radians/revolution) = 207/3 radians/s
R? = (1 in?)(1 m/39.37 in)? = 0.000645 m?

L=2in=2/39.37T m = 0.0508 m

p = (50 lb,, /£t3)(0.45359 kg/Ib,,(39.370/12 ft/m)® = 800.9 kg/m?

K

Il

= 0.998004; k% = 0.996012

Hence, the required torque is

T, = (47)(0.200 kg/m-s)(207/3radians/s)(0.000645m2)(0.0508 m)(249.8)
= 0.431 kg-m?/s? = 0.32 ft-lbs

and the power required is

P =T,Q; = (0.32 1bsft)(207/3 s71)(3600 s/hr)(5.0505 x 10~ hp-hr/lbs-ft)
=0.012 hp > '

In these calculations we have tacitly assumed the flow to be stable and laminar.
To test this assumption, we formulate a transition criterion based on the critical
angular velocity expression given under Fig. 3.6-2:

OR2(1 _ <)3/2
Re = QipR*(1 — k)
n

Insertion of numerical values for the present system gives

< about 41.3 for k = 1.

_ (207/3 radians/s)(800.9 kg/m?)(0.000645 m?)(1 — 0.998004)3/2
- (0.200 kg/m-s

This Re value is well below the transition value of 41.3 for this geometry; therefore,
the foregoing predictions of T, and P are realistic.

Re

= 0.0048

3-



3A.2 Friction loss in bearings.

The power expended to overcome the bearing friction is

2
_ 2 p2 K
P=T,Q; =4ruQ;R°L (1 _52)

in which L is the total bearing length of 2 X 20 x 1 = 40 ft for the two shafts. The
specifications for this problem (converted to SI units via Appendix F) are:

. 16
T 16+ 2 x 0.005

[ K? 0.998751
<1 — KZ) = 0001249~ 09O

1 = (5000 cp)(10~> kg/m-s/cp) = 5 kg/ms
2; = (50/60 rev/s)(2m radians/rev) = 57 /3 radians/s
R? = (8/39.37 m)* = 0.04129 m?

L =40 ft = (40 x 12/39.37 m) = 122 m

= 0.999375; k? = 0.998751

With these values, the calculated power requirement is

P = (47)(5 kg/m-s)(57/3 rad/s)?(0.04129 x 12.2 m*)(799.6)
= 6.938 x 10° kg-m?/s®

This result is then expressed in horsepower by use of Table F.3-3:

P = (6.938 x 10° kg-m?/s%)(3.7251 x 1077 hp-hr-[kg-m? /52]—1)(3600's/hr)
=930 hp :

Thus, the fraction of the available power that is lost in bearing friction is 930/(4000+
4000) = 0.116.



3A.3 Effect of altitude on air pressure.

For a stationary atmosphere (i.e., no wind currents), the vertical component of
the equation of motion gives

dp _
a7
The air is treated as an ideal gas,
_ M
P=RT

with M =~ 29, and with temperature in °R given by
T(z) = 530 — 0.003z

at elevation z ft above Lake Superior. The pressure p, at zo = 2023 — 602 = 1421
ft above lake level is to be calculated, given that p; = 750 mm Hg at z = 0.
The foregoing equations give

dlnp Mg
dz ~  R(530 — 0.003z2)

Integration gives

M 1421 dz
In(pz/p1) = ‘}79/ (
0

530 — 0.0032
Mg 1 z==1421
=29 1n[530 — 0.003
R 0003 " A
o ‘ Mg I 525.737
~ 0.003R | 530

Insertion of numerical values in 1b,,-ft-s units gives

(29 1b,, /1b-mol)(32.17 ft/s?)
(0.003 R/t)(4.9686 x 10% Iby,-ft2 /s? Ib-mol-R)
= —0.0505

In(p2/p1) = In [525.737/over530]

Hence, ,
P2 = p1exp(—0.0505) = 750 x 0.9507 = 713 mm Hg

Since the fractional change in P is small, one gets a good approximation (and a
quicker solution) by neglecting it. That method gives p; = 712 mm Hg.



3A.4 Viscosity determnation with a rotating-cylinder viscometer.

Here it is desirable to use a sufficiently high torque that the precision of viscosity
determinations is limited mainly by that of the measurement of angular velocity.
A torque of 10* dyn-cm, corresponding to a torque uncertainty of 1%, appears
reasonable if the resulting Reynolds number is in the stable laminar range.

The geometric specifications of the viscometer are:

R = 2.25 cm; kR =200 cm
£k =2.00/2.25 = 0.888889; k? =0.790123
1—-x*=0209877;  (kR)? = 4.00 cm?
L =4 cm; R? = 5.0625 cm?

The angular velocity corresponding to this torque value is:

_ T.(1-«%)  (10* g-cm?/s%)(0.209877)

o = 4rp(kR)2L  4m(0.57 g/cm-s)(4 cm?)(4 cm)

= 18.3 radians/s

The Reynolds number at this condition is:

_ Q,R%p  (18.3)(5.0625)(1.29)
T 0.57

Re

=210

Accofdng to Fig. 3.6-2, this Re value is well within the stable laminar range; there-
fore, a torque of 10* dyn-cm is acceptable.



3A.5 Fabrication of a parabolic mirror.

Equation 3.6-44 gives the shape of the free surface as

s-n=(5)”
0= 29 r

The required derivatives of this function at the axis of rotation are

dz d?z Q2
E =0 and 27.*2 = 7

Setting the desired focal length equal to half the radius of curvature of the mirror
surface at r = 0, and using Eq. 3A.5-1, we obtain

_ 1 62
f—zg/Q

Thus, the required angular velocity to produce a mirror with focal length f = 100
cm at standard terrestrial gravity is

g
Q=,/L
2f

_ [980.665 cm/s?
\ (2)(100 cm)

= 2.214 radians/s

which corresponds to 60€2/27 = 21.1 revolutions per minute.

[



3A.6 Scale-up of an agitated tank.

The specifications for the operation in the large tank (Tank I) are
Ny = 120 rpm; p1 = 13.5 cp; p1 = 0.9 g/cm?

and the tank is to be operated with an uncovered liquid surface.

To allow direct prediction of the operation of Tank I from experiments in the
smaller system (Tank II), the systems must be geometrically similar and must run
at the same values of Re and Fr. To meet the latter requirement, Eqgs. 3.7-40,41
must be satisfied.

Equation 3.7-41 requires
DuN{ = DiN?

when, as usual, the gravitational fields for the two systems are equal. Then the
model must operate at

NH = NI\/ DI/DH = 120v/10 = 380 rpm
and Eq. 3.7-40 requires
(P (P’
Vi1 = vg Dy Ny
=(13.5/0.9)(0.1)*(v'10) = 0.474 cp
From Table 1.1-1, we see that this value of vjy corresponds closely to the value for

liquid water at 60°C. Thus, the model should opeerate at ;380 rpm, with liquid water
at very nearly 60°C.



3A.7 Air entrainment in a draining tank.

As this system is too complex for analytic treatment, we use dimensional analy-
sis. We must establish operating conditions such that both systems satisfy the same
dimensionless differential equations and boundary conditions. This means that the
large and small systems must be geometrically similar, and that the Froude and
Reynolds numbers must be respectively the same for each.

Choose D (tank diameter) as characteristic length, and (4Q/7D?) as charac-
teristic velocity, where @) is the volumetric draw-off rate. Then

4 16Q?
_Q_[i and Fr = )

Re = wDp w2 D%¢

Subscripts L and S will be used to identify quantities associated with the large and
small tanks, respectively. We take the gravitational field ¢ to be the same for both.
Then the requirement of equal Reynolds numbers gives

(5) (39) (2) (2)- (52) oo -,

and the requirement of equal Froude numbers gives

D
(5) (0.02277)*/® = 0.080

Dy 0
Hence,
Ds = (0.080)(60 ft) = 4.8 ft
s = (0.080)*/2(800 gal/min) = 1.46 gal/min
Therefore:

a. The model tank should be 4.8 ft in diameter.
b. Its draw-off tube should be 0.080 ft in diameter and 0.080 ft high.
c¢. Its draw-off tube should have its axis 0.32 ft from the wall of the tank.

Tty el el Sl e il — =

gal/min, air entrainment will begin when the liquid level is (4.8/60) of the level
at which entrainment would begin in the large tank at its Wlthdrawal rate of 800
gal/min.

3-7



3B.1 Flow between concentric cylinders and spheres
a. The derivation proceeds as in Example 3.6-3 up to Eq. 3.6-
26, which we choose to rewrite as

2
%o _p, + D2(5)
r r

The boundary conditions are that v,(kR)=Q,;kR and v,(R)= QR.

Putting these boundary conditions into the above equation for the
angular velocity gives

Q,=D,+D,—~ and Q, =D, +D,
, K

These equations can be solved for the integration constants

Qe 1Vk*| |Q, 1
b Q12 K| Qx?-Q,
b oyk?| ll 1]~ «%-1
1 1 1 x?
1 Q| k¥ Q
. Q| ¥ Q| x(Q,-92)
hoyk P10 k-1
'1 1 1 x?

Hence the solution to the differential equation is

0, (% —QiK2)+(Qi —Qo)(KR)z
r 1-k? 1-x2 Ur

The z-components of the torques on the outer and inner cylinders are

Le2n d(v
Tz = -[OJ.O (—TrBR)r___'R Rd@dz = 27Z'LR2 [+,ur ;l;(—f') }ﬁR



Qi _ Qo 1 KR 2
= ZﬂLRZ“R-(_l—___K—Z_)(KR)Z(—Z—R_g—) = —47'[,“.L(Qz - QO)E_ K).2

Le2m 2 d(v
Tz = ,[0.[0 (+T1’9 KR)r:KR KRdOdz = ZHL(KR) l:_'ura;(—rg):'r-xR

2
= HAmul(Q, - Q,) gKR,Zz

b. In Example 3.6-5 it is shown how to get Eq. 3.6-53 for the velocity
distribution. The boundary conditions are : v,(kR)=kRQ; sinf and

v,(R) = RQ; sin 8. Equation 3.6-53 can be written in the form

v, 3
=D, +D (R)
rsin @ r

The constants can be obtained according to the method of (2) and the
final expression is

o (a0) (00
rsin@ @ 1-x° 1-x3 r

The torques at the outer and inner cylinders are then
T, IZ”I ( T, ) (Rsin 6)R? sin 6d0d¢

jj”j:{wr—(vl)] (Rsin 0)R? sin 6d6d¢
r=R

r
(kR)®
1-x3

-87u(Q; - Q,)

(kR)’

T, =" ["(+7, ) _ . (kRsin 0)(kR)’ sin 6d6d¢ = +87mu(L; - Q )1__’(3



3B.2 Laminar flow in a triangular duct
a. It is clear that the boundary conditions that v, =0 at y=H

and at y=1+3x. Therefore the no-slip boundary conditions are
satisfied. Next it has to be shown that the equation of motion

83(2 + 8y22 ]

is satisfied. Substituting the solution into the second-derivative
terms, we get

Po-P ) 9> | 9 2, 12
Hx*+H
,u( 4uLH )(5’x ayz)(?w y—y° -3Hx* + Hy )

—_ PO '(PL _ALT
_(———4LH )(6_1/ 6H -6y +2H)

and this just exactly cancels the pressure-difference term.
b. To get the mass rate of flow we integrate over half the
cross-section and multiply by 2:

P, - P
w= ZP(TO;LEIL)I: _[:/ﬁ(y - H)(3x* -y* )dxdy

[ e
_—.2p( Wil )_f (y-H)(x* -y x)ly dy
=ZP(—4(’;L‘}T)I:(?—H)( 33'72 )dy
(P, -, ) HSJ V3(®,-®,)H*

-p -5 |=P
33/2 uLH )\ 20 180uL

The average velocity is then the volume rate of flow (w/p), divided
by the cross-sectional area H?/~/3 so that

<v >= (®o _"F’L)H2
‘ 60uL

3”“0



The maximum velocity will be at the tube center, or at x =0 and y =
y=2H/3, so that

_(®y-P)H*

vz,max - 27,uL 9 <UZ>




3B.3 Laminar flow in a square duct

a. The boundary conditions at x=+B and y =B are seen to
be satisfied by direct substitution into Eq. 3B.3-1. Next we have to see
whether the differential equation

0 (® —@L)w(azvz N 8202)

L ox?  oy?

is satisfied. Substltutmg the derlvatlves from Eq. 3B.3-1 into this
differential equation gives

Pt (2 (4))

Hence the differential equation is not satisfied.
b. The expression for the mass flow rate from Eq. 3B.3-1 is
given by 4 times the flow rate for one quadrant:

o-s B2l (3 oo (3 o

= (?0 —ZL)B pfljl(l—fz)(l— ﬂz)dé‘dn

=(?°*Z)B Pp(a-e)ae]

= ('(Po —'0°L)B4p(;)2: 0.444('630 _.‘(PL)B4p
HL ’ uL

_547’



3B.4 Creeping flow between two concentric spheres
a. From Eq. B.4-3, there is only surviving term on the left side

1
rsin @ d60

—(rvysin6)=0 whence  v,sin 6 = u(r)

b . From Eq. B.6-8 (omitting the left side for creeping flow)
the only surviving terms are

0=-12%, 1d(r2dﬁ) or 0=-12% ! i(rzd—u)
r do TH r? dr dr a0 H r’sin@dr\_ dr

c. When the equation in (b) is multiplied by rsin 6, the left side
is a function of 8 alone, and the right side contains only r. This
means that both sides must be equal to some constant, which we call
B. This gives Eqgs. 3B.4-2 and 3.

Integration of the pressure equation proceeds as follows:

17— 1
[Pap=["" 20 o p,_p -pnB2TE)_p; c0lE
®1 ¢ sin6 tanje tanie

From this we get the constant B

_®-® _®-%
Incot’le 2Incotle

Next we integrate the velocity equation

d(r du) Br or u= %(——C—R C)
dr dr U 2u\R r 2

where we have selected the constants of integration in such as way
that they will be dimensionless: C, =-x and C, =-x—1 (from the

no-slip condition at the walls). When this solution is combined with
the expression for B we get:

gﬁ[ (17) - K(l—éﬂz ZEC_OT; | 21; [(179 i ,{1__1;)]
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which leads to Eq. 3B.4-5.
d. The mass rate of flow must be the same through any cross-

section. It is easiest to get w at 0 =37 where vy =u(r)/sinf=

u(r)/sind w =u(r):

w= j';”f:va(,le:lnrdrdq) = ZnRzp.fiuédﬁ

4ulncotic ¢
®, -%,)R
=27R%p- (P1-%)R l(1- x)° (see Eq. 3B.4-6)

- 4ulncotle 6

314



3B.5 Parallel-disk viscometer
a. The equation of continuity (Eq. B.6- 5) just gives 0 = 0.
Equation B.6-5 gives for the 6-component of the equation of motion

(10 d%v
0= z v
or ( ror ( )) 9z°
b. When the postulated form for the tangential component of
the velocity is inserted into this, we get simply d*f/dz* =0, which has
to be solved with the boundary conditions that f(0)=0 and f(B)=Q,
which are just statements of the no-slip conditions on the wetted

surfaces of the disks. It is easily shown that f=Qz/B. and therefore
that v, = Qrz/B.

c. The z-component of the torque exerted on the fluid by the
upper rotating disk is

T, = [ (cv.r)_ rdrdo =21 [w(f;’z H

We can now do the r-integration and solve for the viscosity to get the
desired formula, u = 2BT, /7QR*.

Q (R 3
Brdr=27t,u-73—_[0 ridr




3B.6 Circulating flow in an annulus

a. Neglect of curvature gives for the z-component of the

equation of motion

0=_9% . d*v, or
iz H

d*v, _dP
o T

The left side is a function of r alone and the right side is a function of
z alone, so that both sides must equal a constant. Therefore

d*v,
dr?

=C’ with boundary conditions v,(kR)=v, and v,(R)=0

Use the dimensionless variables ¢ =v,/v, and & =7/R; instead of the

latter, it is more convenient to use ¢ =(£ - k)/(1-x) in this part of
the problem. Then

2
% =2C; with boundary conditions ¢(0)=1and ¢(1)=0

Integration of this equation gives
$=C5*+C,0+GCy
The boundary conditions give C; =1and C, —(1+C;) so that

¢=C*-(1+C))¢+1

The mass-balance condition f; ¢d{ =0 gives C, =3, and the velocity
distribution is

¢=3-4C+1

b. We use exactly the same procedure when the thin-slit ap-
proximation is not made, but the algebraic manipulations -are
messier. The equation to be solved is



l_fl_(rdvz)—_c_ii
'urdr dr ) dz

with the same no-slip boundary conditions as before. Use the same

dimensionless variables as in (2) and find that the solution has the
form

¢=C,E2+C,In& +C,

The three constants of integration are determined from the no-slip
boundary conditions ¢(x)=1 and ¢(1)=0, along with the mass-

conservation condition I()Z § ﬁ ¢EdEAO = 0. The results are

(1-x2)-(1+«*)In(Yx)" = (1-«?)-(1+«*)n(1/x)

¢ -c, =_1—[2,<2/(1'_ Kzz)]m(l/K)? . e

With these expressions for the integration constants, Eq. 3B.6-2
follows.

3~



3B.7 Momentum fluxes for creeping flow into a slot
a. Inside the slot, the nonzero component of pvv is

3w ) y 27
= —~_| |1 Z
Sl (4BWp) [ 3 }

Outside the slot, the nonzero component of pvv are

' pvx; —p 2w )’ x* — 2w )’ x*y?
ST o) ey PO TR ) Py
pv.y, =pv.v_=p 2w 2 xsy'
X"y y x n.Wp (x2+y2)4

b.Atx=-a,y=0

vy =g 2 L
o nWp ) a?

This quantity is positive as we would expect, since positive x-momentum is being
transported in the x-direction.
c. At x=-a, y—+a.

This is negative, since at the point in question the y-momentum is negative and
being transported in the x-direction.

d. The total flow of kinetic energy in the slot is (if we use n=y/ B):

Y ’ B 3w 1
-[0 I_B(%pvz )vxdydz = ZWJ.O (%pVi )dy = PBW( )-[0(1 - n°)dn

4BWp
3
=EpBW 3w
35" \4BWp

The total flow of kinetic energy across the plane at x = -a is

348



W p+oo ‘ .
.[0 j_w(%pvz )V dydz:ipwj+ (v2 +v2)v dy
l .f a7y2 y
- ”WP @ @ o
105p g3
768 n‘Wp a2

The integrals appearing here can be found in integral tables.

We conclude that the total flow of kinetic energy across the plane at x = -a
is not the same as that in the slit. As a — oo, the flow of kinetic energy tends
toward zero, since the fluid velocity tends to zero as x — —eo. This emphasizes
that kinetic energy is not conserved.

| ‘e. Eq. 3B.7-1 clearly satisfies the equation of continuity, since
for incompressible flow (dv, /dx)+ (avy / ay) +(dv,/dz) =0. When the

derivatives are calculated from Egs. 3B.7-2, 3, and 4, it is found that

these expressions also satisfy the incompressible equation of
continuity as well.

f. From Egs. 3B.7-2 and B.1-1 we get

.. dv, 2w 3x? 4x* _ Awu
T = ~2H ox | . WO (+2 + 2P (2 442\ T aWpx?
y=0 (x*+y?) (£ +¥7) Jyeo
v =2 .| _ H( 2w ) . 0
xx ox 20 TWp (x2 +y2)2 (xz +y2)3 .

The second of these is an illustration of Example 3.1-1.

-g. From Egs. 3B.7-2, 3B.7-3, and B.1-4, we get, after
evaluating the derivatives

-‘”(7;* ay} -

x=0
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3B.8 Velocity distribution for creeping flow toward a slot
a. For the given postulates, the equation of continuity gives

18

.5 (TU ) 0 from which it follows that v, = 1 £(6)
’ r

Since the flow is symmetric about 6 =0, df/d8 =0 at 6 =0; and since
the fluid velocity is zero at § = +1 7, it follows that f=0at §=x1zx

b. The components of the equation of motion given in Egs.
B.6-4 and 5, appropriately simplified are

- O u d*f _JP 2,u daf
O=——r+= d O=——+—-
or r’>de? o 96 1 de

c. When the first equation is differentiated with respect to 6
and the second with respect to r and the two results subtracted we
get Eq. 3B.8-1.

d. The equation in Eq. 3B.8-1 can be integrated once to get

d2
d@é +4f=C,

A particular integral is fp; = $C;, and the complementary function is
(according to Eq. C.1-3) fcr =C,c0520+C;5in260 . The complete
solution is then the sum of these two functions.

e. The integration constants are determined from the
boundary conditions. It is found that C; = 0, and that $C, =C,. Then
from

w= —Wpf 2 *0,1d0 = Wpr”/

f46=-2WoC, |77 " c0s2 040 = -WpC,m
we get C, =—w/Wpr and the velocity distribution is given by Eq.
3B.8-2. -

f. From the velocity distribution and the equations obtained
in (b) we can get

320



aa_’f = :t_?’[ nﬁup](cosz 0 —sin® 6)

and hence

2 .
P= —%( nvilup)(cosz 6 — sin? 9) +F(6) (%)

Furthermore

o 2u df (Zu) 2w 2
222 P = 2L
26> 248 or = )\ 7wo cos® 6+ G(r)

Here F and G are arbitrary functions of their arguments. The second
expression for the modified pressure can be rewritten as

= —ri‘z-( ﬂzv;"p)(cos’z 0+ (1-sin? ) +G(r)

= —:t—z( ﬂzxp)(cosz 0 - sin? 6) +H(r) (%)

By comparing the two (*) expressions for the modified pressure, we
see that they are the same except for the functions F and H. Since the
first is a function of 8 alone and the second a function of r alone, they
must both be equal to a constant, which we call ®_,. This is the value
of the modified pressure at r = o.

g. The total normal stress exerted on the wall at 0=7/2 is

(when one uses the result of Example 3.1-1)

Zoolgengs = (P + o0 gory= (P = 08H) L.

2uw
nWpr?

2uw
=P+ -pgh=p. +

h. From Eq. B.1-11
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%ol =_4}2{ﬂq+1ég
Orlo=nj2 or\'r ) r 90 g2

_ —.U[O _( - Ii;rz)(—Zcos Osin 9)}

The first term is zero since v,/r =f since v, =0 was one of the
postulates. The second term is zero, as can be seen by using Eq. 3B.8-
2, and the fact that cos% =0. This is agreement with the result in
Problem 3B.7(g).

i. Since the z-component of the velocity is zero, we can

expand the velocity vector in either the cylindrical coordinate system
or the Cartesian system thus

=0

O=r/2

v=98,0,+0,0,=08,v,+8,7,

Since v, =0 was one of the postulates, when we take the dot product
of this equation with 6, we get the x-component of the velocity

3 3

cos® = — 2wx 2wx

= 8 ~6 = = - = -
0x = (8:-8,)= v, cosO nWpr aWpr* aWp(x +y2)2

Similarly for the y-component of the velocity

_ 2w 5. o 2wxy
vy—(Sy-ﬁ,)—v,sme——nwprcos Osin O = Wor?
_ 2wx’y
7sz(x2+y2)2

These results are in agreement with Egs. 3B.7-2 and 3.
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3B.9 Slow transverse flow around a cylinder
a. At the cylinder surface we get by using Eq. B.1-11

Cuv_, cos 6 .
Pl =Pn === ~ pgRsin 6
- =_u(ré_(zg)+_l__«9_v_,_ _ Cuv_sin®
oir=R or\r) rae) _, R

Also from Example 3.1-1 we know that 7,,| _, =0.

b.If n is the outwardly directed unit normal vector for the
cylinder, then the force per unit area acting on the surface is —[n-n]

evaluated at the surface. But n=3,, so that the x-component of the
force per unit area at every point is

~(8,[8, -=])| . =—(5,[8, -(p8 +)))
The pressure and stress terms are evaluated thus (using Eq. A.6-13):
_(8; (8, -pS])

_(8x '[5, T]) r=R —(8x '[Sr '("'+8789Tf9 +)])
=—(8,-80)7, |-z = Trol,g SN0

r=R

= ~(8,-8,p)| _, =-p| _pcos6

r=R -

r=R

These expressions lead to Eq. 3B.9-5.
c. The total force on a length L of the cylinder is then

F, = _[OLIOZ "(—p|r=R oS0 + T, _, sin G)Rdedz

2 s a2
= RLJOZ”(—;?“, cos 6 + prmlgos o +pgRsinBcos O + C/,wm;m QJdG

C,quo 2z
=RL( = ) [, d6=2aCuv,L

The first and third integrals in the next-to-last line are zero since the
integrands are odd.
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3B.10 Radial flow between parallel disks
a. The continuity equation is, for v, =v,(r,z) , from Eq. B.4-2

10

; ar(rv )=0  from which 10, = ¢(z)

The equation of motion is obtained from Eq. B.6-4

o 8v,=_fl_f+ a(la(m)) 9%,
o dr HMor\ror 2

b. When the results for the equation of continuity in (a) are
used in the equation of motion, we get Eq. 3B.10-1.
c. With the creeping flow assumption, Eq. 3B.10-1 gives

d'(P d*¢ : | av ' d*¢
dr #Zi? from which r_d?—B and u——5=8B
since the left side is a function of r alone and the right side a function
of z alone, and therefore both sides must be equal to a constant, B.
When the pressure equation is integrated from r; to r,, we get

j AP = Bj'rzd— whence B—'ﬂaz_aQl

nor B ln(rz/rl)

d. When this result is substituted into the ¢ equation we get

d’¢ - . ®,-®, z°
——=-—2L—2_ " from which ¢=- ——————+Cz+C
dz*  pln(ry/r,) pin(ry/r) 2

The integration constants are obtained from applying two boundary
conditions. We could require that ¢ =0 at z=1b, and thereby
determine the integration constants. Another method is to recognize
that the flow is symmetric about z = 0, and use as one of the
boundary conditions d¢/dz=0 at z = 0. Either method will give
C, =0, and then C, is easily obtained. The final result is
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G

Division by r then gives Eq. 3B.10-3.
e. The mass rate of flow at any cylindrical surface in the

system must be the same. Select the surface at r =r, and obtain

_[2mptb _ . (’(P ﬁb
w—j'o _bpv,lr:r2 dzr,d0=2mpb-2- o (rz /71 ( -£ )dé

The integral gives 2/3, so that Eq. 3B.10-4 is obtained.
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3B.11 Radial flow between two coaxial cylinders
a. From Eq. B.4-2 we get for this flow, with v,(r),

—E—(rv,) =0 whence v, = ¢ where C is a constant
rdr , r

Atr=R, v,(R)=C/R so that C = Ro,(R).

b. The relations in Eq. 3B.11-1 follow immediately from Egs.

B.6-4, 5, and 6 for the velocity profile v, (r) in (4).
c. Integration from r to R gives

R
1 1
, - 4oC( 2 7

This gives, making use of the meaning of C obtained in (4)

P(R)-P(r) = pc2(—2—715)

2
P~ P(R) = 3p[Re, (R 7=z )= %"[”f(R)]z[l‘(% }

d. The only nonzero components are (from Egs. B.1-8 to 13)

dv 1 v 1
brr Y " Foo - K-
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3B.12 Pressure distribution in incompressible fluids

- The equation of motion method to get the pressure
distribution is correct. On the other hand, the second method gives
nonsense, as one can see from Fig. 3.5-1. For an incompressible fluid
(the vertical straight line), specifying the density does not give any
information about the pressure.

3-27






3B.14 Torricelli's equation for efflux from a tank
From Eq. 3.5-12 we get

1
%(vgfﬂux _0)+;(patm —patm)-*_g(o_h)zo
Here it has been assumed that the velocity at the surface is virtually
zero, that the pressure is atmospheric at both "1" and "2", and that
the datum plane for the height is at the exit tube. When the above
equation is solved for the efflux velocity we get Torricelli's equation.
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3B.15 Shape of free surface in tangential annular flow
a. The velocity distribution is given by Eq. 3.6-32, and the
equations corresponding to Egs. 3.6-38 and 39 are:

2 A2 (] s o

Integration of these equations gives (see Egs. 3.6-40, 41, and 42)

Q.x*R\[ (R)? 2
p=%p(1,—KK2) [_(_r_) —4lnr+(%) -pgz+C

Now let p=p,., at ¥ = R and z=2z;, where z; is the height of the
liquid at the outer-cylinder surface. Then we can write at r = R and
zZ= ZR

2
Do =1 (? KKR) [-1-4InR +1]- pgzg +C

which is the equation that determines C. When we subtract the last
equation from the equation for p, we get

xR ( 1
p—patmz%p(ll__,(2) (_?_41n€+§2]—pg(z—zR)

The equation of the liquid surface is then the locus of all points for
which p=p,,,,, or ‘

1(Qk*RY (1
ZR—Z='2—g—(1 K )[62 4].1’16 é)

b. When the outer cylinder is rotating, we can use Eq. 3.6-29 |
for the velocity distribution to get




QRN 1 1( kR |
A o) a2

Then, we select r = R and z = z; as the point to determine C.

Q kR 1( 1)? 1
”m”’(l_xz) Hz) “ZI“R‘E(K)Z}‘%ZR*C

Subtracting, we get

ror R (2 - me- (3] v ot

From this equation we can get Eq. 3B.15-2 by setting the left side of
the equation equal to zero and solving for z; —z. »
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3B.16 Flow in a slit with uniform cross flow
From Eq. B.6-1, for this problem we have

do, _

®,-® d’ d? d
oo, e _(Bo=®u) %o, ¢ _ 449
dy L dy

28 _4%2%41=0
5 or i’ in

in which n=vy/B, ¢= vx/[('(PO -'(PL)Bz//,tL], and A=Byyo/u. This
equation has to be solved with the no-slip condition at n=0,1. We
write the solution as the sum of a complementary function and a
particular integral. The equation for the complementary function is

d>¢ d . : C

dngF -A 3:;}: =0  withsolution ¢ = Zle’“’ + C?
- By inspection, the particular integral is ¢,; = n/A. Application of the
boundary conditions then gives the constants of integration. The
final solution is then (with A =Byypo/u)

An _ . -®, )B? Ay/B _
¢____1_ n_eA 1 or sz( 0 L) _1__}_/__6A 1
A e’ -1 uL A\B " -1

b. The mass rate of flow in the x-direction is then

®, - P, )BW
w=|[’ vadydz=( 0 ;i) £ (2 gan

(‘PO—?L)BE’Wp_l_(l_l 1 )
uL A

2 A e4-1

¢ By making a Taylor-series expansion about A = 0, from (a)
we get ¢ =1(n-n*)+O(A). When A — 0, this result can be shown to

be equivalent to Eq. 2B.3-2. Similarly, A Taylor-series expansion
about A = 0 yields from the result in (b)

w =_1_(_1__l+_1__)
[(Po -, )WB%o/uL] A\2 A e*-1
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11, 1 ]
(2 A (1+A+1A%+1A4%+)-1

1(1 1 1
== =-=+

Al2 A A(1+%A+%A2+---)]
-1 l_l+1—%A+%A2+
Al2 A A
=1 +0(A)

But the "B" in this problem is twice the "B" of problem 2B.3. If we
switch to the "B" of Problem 2B.3, it is found that the answers agree
exactly.

d. For the coordinate system here, we select as the
dimensionless quantities

y 0, bvepo
Y==; V= ;0 =——
M RN = R

Then the differential equation and boundary conditions are

av d’v .
aEY=1+d_Y2- with V(i1)=0

The solution is then the sum of a complementary function and a
particular integral (as before in (c))

| V=§—1-e“’f+C2+Z
a a

- Application of the boundary conditions then leads to

—e® +cosha + Ysinha
asinha

V=

Then the average value of this over the cross-section of flow is

3-33



V)= "WVAY 1[7(~e" +cosha+Ysinha)dY —(V/a)sinha+cosha
) ?dY 2 - asinha B asinha

Then we can form the ratio given in Eq. 3B.16-3:

vV _ e”Y —Ysinha - cosha
(V)  (1/a)sinha - cosha

~ As a check on this we can go directly from Egs. 3B.16-1 and 2
to Eq. 3B.16-3. From the first two equations we get

y e¥P-1

v, _ v, _ B o1 24" -1)y-BeM"-1)]
(ve) wwB 1 1, 1 = Bl(A-2)(e*-1)+24]
| 2 A et-1

Next, we make the connections between the notations in the two
different approaches: |

y:z+b; B=2b,' A=2x
(the "y" of part (c) is called "z" here, and { = z/b). Then

v, a[(eza —1)(z+b) - 2b(e ) — 1)]

<Ux> B b[(a - 1)(€2a - 1) + 2(1] |
(eza - 1)(Z;+ 1)- 2(8‘?‘Ce“ - 1) _ (e"‘ —e@ )(‘C+ 1)- 2(e“§ - e""‘)

(1/a)[(a - 1)(e2°‘ - 1) + Za] - (l/a)[(a - 1)(e°‘ —e™@ ) + 2ae'“]
_ C(ea ‘e—a)‘*'(ea +e-a)‘2ea§ _ ¢sinha +cosha —e®

- (1/a)[a(e°‘ +e)-(e*—e® )] ~ cosha - (1/a)sinha
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3C.1 Parallel-disk compression viscometer

a. The equation of continuity of Eq. B.4-2 for 1nc0mpre351ble
fluids, taking into account the symmetry about the z-axis is just Eq.
3C.1-6. The equation of motion in Eq. 3C.1-7 comes from Eq. B.6-4
ignoring the hydrostatic pressure, the inertial force terms, and
omitting the terms that are small.

b. Equation 3C.1-7 can be integrated with respect to z to give

q=¥LﬂQ +Cz+C,
2u dr

The constant C, is found to be zero from the boundary condition in |

Eq. 3C.1-8, and C,; is found from Eq. 3C.1-9.
c. Integrating of Eq. 3C.1-6 with respect to z from 0 to H

H1 d 1 d}? — (% |
. ra"r(r udrz(z H))dz— jo dv,

Performing the ihtegrations then gives

H*1 d( dp) |
_4a 14 Yo
12u rdr\  dr

d. Integration of the equation in (c) then yields

12uv, r?
p=- H304 C/Inr+C,

The integration constant C; must be zero, since the pressure is finite

at the center of the disks, and C, is determmed from Eq. 3C.1-10.
Equation 3C.1-13 is thus obtained.
e. The force on the upper plate is then

27 (R 3UVLR 2 3UY,
F(t)= f f gzz:)[ (E):lrdrde ZR[N’U 3'[( é)«fé

The integral is 1/4, and this leads to the result in Eq. 3C.1-14.
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f. In this situation, the radius of the glob of liquid R(t) and the
instantaneous disk separation H(t) are related to the sample volume

Vby V = z{R(t)]* H(t). Then the force acting on the upper disk is

E(t) = IszR(t)3#vo R(t)] [1_(_7‘_) :lrdrd@

[H(#)] R(t)
_ 3muvg[R(H])* _ 3pu,V?
2lH®Y  2[H®OT

g. If, in Eq. 3C.1-14 we replace v, by —dH/dt, we then have

an ordinary, separable differential equation for H(t). Integration
gives

flar=—" 41
37z,uR4 RENTE
whence

1 1 4Ft

[HOF H; 37wR4



3C.2 Normal stresses at solid surfaces for compressible fluids

First write the equation of continuity for a compressible fluid
as

0 1
e ==(V-v)=—(v-Vp)

The normal stress on a surface perpendicular to the z-axis is

v,
Tzl = (—2# =+ (3u- K)(V-V))

z=0'

dv
=(2ﬂ(%+-§yl+%mp+%(v.vp)} +(3p- K)(-%lnw%(v-VP)))

=($u+ @(%hwj

z=0

z=0

The terms containing v drop out by the no-slip condition at the
surface, and their derivatives with respect to x and y drop out on the
surface as explained in Example 3.1-1. This result shows that the
normal stresses at surfaces are zero for compressible flow if the flow
is at steady state.
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3C.3 Deformation of a fluid line

- The curve at any time t is 6(r,t) = (v, /r)t, which in tangential
annular flow is (from Eq. 3.6-32)

6(r,t)= [@/—r)—i:—ng,.t and df=- 2R/ rj Jot dr
(Yx) -1 (k) -1

The differential element of length along the curve is given by

(d1)* = (dr)* +(rd0)* = (dr)*| 1+ 4R/ r)i(gitzz
((yx)*-1)

The total length of the curve is then

== [f 1 ARV CAN g 167N
((yx)*-1) ((yx)* 1) &*

To get a rough, order-of-magnitude estimate assume that N is large

and then the "1" can be neglected and the integral performed
~analytically

_4nNk

! .
R 1:r (limit of large N)

3-3%



3C.4 Alternative methods of solving the Couette viscometer problem
by use of angular momentum concepts

a. By making an angular momentum balance (actually the z-
component of the angular momentum balance) over an annular
region of thickness Ar and height L we obtain

(27rL)-(r7,q )[r —(27(r+ Ar)L)-(r7,q )l =0

r+Ar

Dividing through by 2zLAr and re’arranging we get

(rzrre)

2
—-\r T )
r+Ar ( r6

r =
Ar

whence

d
;l—r(rzrre)=0

the second form resulting from taking the limit as Ar — 0. Then using
Eq. B.1-11 for the stress-tensor component, we have

o4z
dr dr\ r
whence

From this Eq 3.6-20 follows.

b. Here we start with Eq. 3.4-1, which simplifies to the
following for the symmetric stress tensor |

[V-{rx<}]=0

The z-component of this equation is

339



Talel)=0or Zo{rrxe), )=

~ where, in cylindrical coordinates, r=8,r +8,z. We now work out the
cross product, which is

{rxt}, =23 6.,5(8,7+8,2),7;, =€ .47 +£,4,(0)7,,
i

Hence the equation of change for angular momentum simplifies to

and the development proceeds further as in (a).



3C.5 Two-phase interfacial boundary conditions

a. This result follows at once from Eq. 3C.5-1, when the
viscous-stress-tensor terms are omitted.

b. To get the right side of Eq. 3C.5-3, it is evident that Eq.

3C.5-1 had to be multiplied by 1/p'v; . The interfacial-tension term in
Eq. 3C.5-3 is then

dow ool 9 b=l
Ry R, || lhvgp' R, R, )| Lvop'

The terms involving the viscous stress tensor are

LEJI R ML AN

B plvg I

p'v? plvd
[nI‘TH]__ﬂn[nl'.'YH]__Iv‘n[nl'fn]_v_o___[nl_vn] I _p—I—I_
I AP R L | e

And finally, the pressure terms are converted to modified pressure
terms plus terms involving the gravitational acceleration

nI(PI ~Po +p1g(h—h0) B p' =P +png(h_ho)J _n! g(h-ho)(pl _pn)

T2 T2
P Yy P Yo

o)

We see that the Reynolds numbers for the two phases, the Weber
number (Eq. 3.7-12), and the Froude number (Eq. 3.7-11) appear as
well as the density ratios for the two phases.
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3D.1 Derivation of the equation of motion from Newton's second
law of motion

a. Equation 3D.1-1 is the statement that the time rate-of-
change of momentum is equal to the sum of the surface forces and
the gravity forces acting on a small blob of fluid.

When the Leibniz formula (Eq. A.5-5) is applied to the left side
of Eq. 3D.1-1, we get

4 [ovdv = | —%pvdV+ [(ov)(v-n)dS= | ipvdV+ [[n-pvv]ds

dt vy 9 S(t) vndt s
= f —a—pvdV + I[V -pvv]dV  (using Eq. A.5-3)
viny @ Vit) .

The term containing the stress tensor in Eq. 3D.1-1 can also be
rewritten as a volume integral using Eq. A.5-3 to give

d
—pvdV =— |[V-pvv]dV - ]|dV + |pgdV
VJ(‘t) ot VJ(‘t) VJ(-t) VJ(‘t)

Since the choice of the blob volume was arbitrary, all the volume
integral operations may be removed, and we obtain the equation of
motion of Eq. 3.2-9.

b. If the blob is fixed, then we can write a momentum balance
over the blob as follows:

2 [ pvdV = ~[[n-pvv}dS - [n-m]dS + | pgdV
dtv S S v

This states that the rate of increase of momentum within the fixed
volume equals the rate of increase because of convective transport,
the rate of increase because of molecular momentum transport, and
the force acting on the system by gravity. The time derivative can be
taken inside, since the volume is fixed, and the surface integrals can
be converted to volume integrals. The result is an equation
. containing only volume integrals over the fixed volume:

j = PvaV = ~[[V-pvv]dV - [[V-x]dV + [ pgdV
V |4 14 14

-4z



Since the volume was chosen arbitrarily, the volume integrals can be
removed, and, once again, the result in Eq. 3.2-9 is obtained.
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3D.2 The equation of change for vorticity

Method I:
Start with the Navier-Stokes equation in the D/Dt-form, but

rearranged thus:

591:—[v-Vv]—%Vp+ Wiv+g

ot
=-Viv* +[vx[va]]—%Vp+ Wiv+g

Next we take the curl and introduce the vorticity w =[V x v]

—éhlz[Vx[vxw]]+ Wlw

ot

or

—aa—v:=[V-Wv]—[V-Vw]+ Wiw

Then using Eq. A.4-24 and the fact that (V-v)=0 for incompressible
fluids and (V-w) =0 always (since the divergence of a curl is always

zero, we get Eq. 3D.2-1.

Method II:
Start now with the Navier-Stokes equation in Jd/dt-form

| %= —[V-vv]—%V;H Wiv +g

Take the curl of this equation and introduce the vorticity to get

o _ -[Vx[V-vwv]]+ wWiw

ot

or

% - [s:{Vv-Vv}]—[V°VW]+ Wiw



Details of the manipulations involved in this last step are given here

using the abbreviated notation of §A.9 with the Einstein summation
convention:

-[v x[V-vv]]. = —£30,(99v,) = —€39,(v,0/, —v,9v;) but d;p,; =0
~&; [(a 0,)(90,)+ (v,8j8,vk)]
zk](a Uz)(a Uk) (Ulal(gijkajvk))

~[&:{V W}, - [v VIV xV]]

in which € =3¥¥¢, 6,9,0, is a third-order tensor.
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3D.3 Alternate form of the equation of motion

Take the divergence of the equation of motion for an
incompressible fluid in the form of Eq. 3.2-9, but with the stress-
tensor term written in terms of the viscosity and the Laplacian of the
velocity. This gives

o={v 17-we)- 2%

0= —(VV:(VV)+ ) = %Vzp

Then use the definitions in Eq. 3D.3-2 to get Eq. 3D.3-1.
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4A.1 Time for attainment of steady state in tube flow.

a. In Figure 4D.2, the centerline velocity comes within 10% of its final value
when vt/ R? = 0.45, giving

t = 0.45R? /v = (0.45)(0.49 x 10™* m?)/(3.45 x 10™* m?/s) = 0.064 s

b. If water at (68°F=20°C) is used, with v = 1.0037 x 10~ m?/s from Tables
1.1-1 and F.3-6, the time required is

¢t = (0.45)(0.49 x 10™* m?)/(1.0037 x 107® m?/s) = 22 s



4A.2 Velocity near a moving sphere.

From Eq. 4.2-14 at 6§ = 7/2, the fluid velocity relative to the approach velocity
falls to 1% of v at vy = —0.99v, relative to the sphere, giving

om0 ®)]

with R/r < 1. If R/r << 1, the cubic term will be unimportant, giving

3(R
0.01 = 2 (7)

r 300
R-a =

Clearly, the neglect of the cubic term at this distance is justifiable.

or



4A.3 Construction of streamlines for the potential flow around a cylinder.

In the following drawing we show the construction of the streamline ¥ = % by the
method described in the problem statement.
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4A.4 Comparison of exact and aproximate profiles for flow along a flat
plate.

Let II, = v; /v and Y = y4/veo/vz; then Eq. 4.4-18 gives the approximation

3 /13 1(13\**_,
Mo =230 ~ 3 (556) Y
= 0.323209Y — 0.005002Y3

and Fig. 4.4-3 shows Blasius’ “exact” II, vs. Y. These two velocity representations
will now be compared. '

Location,  Approx. II,, “Exact” II,, Approx. II,/Exact II,
Y Eq. 4.4-18 Fig. 4.4-3

a. 1.5 0.468. 0.49 0.96

b. 3.0 0.835 0.84 0.99

c. 4.0 0.973 0.96 1.01

4-4



4A.5 Numerical demonstration of the von Karman momentum balance.

a. The integrals in Eq. 4.4-13 are

I = / pvz(ve — vy )dy and I, = / p(ve — vg)dy
0 0
Figure 4.4-3 gives f' = v, /v as a function of a dimensionless coordinate,

Y = yy/veo/(vz)

and v, = v, in this geometry. Thus, v; = v f' and pdy = +/ p/m:/voodY so that
these integrals take the forms

I = ,/p,uvoox/ ff(1—fHdY and I, = ./p,uvoo:c/ (1- fHdY
0 0
Numerical evaluation of the integrals over Y then gives
/ f'(1 = f)dY = 0.664 and / (1-fYdY =1.73
0 0

if an accurate table of the solution is used. The foliowing calculation was made
from Fig. 4.4-3:

Y 0 1.0 2.0 3.0 4.0 2.0 6.0
f 0 0.34 0.63 0.844 0.955 0.983 1.00
1-f) 1. 0.66 0.37 0.156 0.045 0.017 0.000
fa-/o 0.2244 0.2331  0.1309 0.0430 0.0167  0.000

Application of the trapezoidal rule gives the values
I =[1/2+0.66 + 0.37 + 0.156 + 0.045 + 0.017 4+ 0/2] x 1.0 = 1.74
= [0/2 + 0.2244 + 0.2331 4 0.1309 + 0.043 + 0.0167 + 0/2] x 1.0 = 0.65
which agree, within their uncertainty, with the accepted values 1.73 and 0.664.

b. Use of Eq. 1.1-2 and the results of a. in Eq. 4.4-18 gives

dI1
'ry,‘y__o = —— +(0)I;

= 0.65+/ ppv3, -
= 0.325Vp,uvc3>o/x

¢. The force in the x-direction on a plate of width W and length L, wetted on
both sides, according to the result in b, is

z—1/2

L
F, = 2W/ Tuz __ dz
0 y ly—O

rL
= 2W(0.325+/ puvd,) / e 2y
0

= 1.30+/puvd LW?Z; The recommended coefficient is 1.328.



4A.6 Use of boundary-layer formulas.

The data for this problem are:

W =10ft
L=3ft
Voo = 20 ft/s

From Table 1.1-2 and Appendix F:

v = (0.1505 cm?/s) /(12 x 2.54 cm/ft)?
=1.62x 107* ft2 /s

p = (0.01813 mPa-s)(10~2 Pa/mPa)(6.7197 x 10™! 1b,, /ft-s/Pa)
=1.218 x 107° b, /ft-s

p=p/r=1218x107°/1.62 x 107* = 7.5 x 1072 Ib,, /ft3

a. The local Reynolds number at the trailing edge (z = L = 20 ft) is:

Re = Ly /v
= (3ft)(20 ft/s/(1.62 x 10™* ft2/s)
= 3.7 x 10°

b. According to Eq. 4.4-17, the boundary layer thickness at the trailing edge is

§(L) = 4.64\/E

vm
: T oo
464 (1.62 x 10— ft°/s)(3 ft)
20 ft/s

=24x107° ft

c. According to Eq. 4.4-30, the total drag force of the fluid on both sides of

the plate is

F; =1.328+/ppLW?2v3

= 1.3281/(0.075 1bn /£6)(1.22 x 105 Ib,n /ft-5)(3 £6)(10 ££)2(20 ft/s)?

= 0.62 Iby, ft/s?
=0.019 Iby



4A.7 Entrance flow in conduits.

~a. With the indicated substitutions, Eq. 4.4-17 gives

1D =464y 2L
2 vmax
Setting vmax = 2(v) at the end of the entrance region, we obtain the following
estimate of L.:
vL, _ D \?
2(v) (9—2§>
or
I — 2 D%*(v)
7 (9.28)2 v
= 0.023DRe

which is similar to the expression given in §2.3, except that the coefficient 1s about
2/3 as large.

b. At the typical transition locus zv., /v = 3 x 10° for flow along a flat plate,

Eq. 4.4-17 gives
§/z = 4.64,[—
Voo

= 4.64(3.5 x 10°)71/2 = 0.00847

and the transition Reynolds number based on the characteristic length 6 is

Vood  VooZ 6

v v

= (3 x 10°)(0.00847) = 2542

~ For flow in tubes, with transition occurring when 6 = D/2 and with ve = 2(v),
the latter result gives D(v)/v=2542 as the minimum transition Reynolds number,
in fair agreement with the reported value of 2100.

¢. For laminar flow between parallel planes, the method in Problem 4.C gives
6 = B and vmax = (3/2)(v;) at the end of the entrance region. Insertion of these
results into Eq. 4.4-17 gives

whence

15 B?*{v,)
(4.64)2 v
= 0.070B%(v,) /v
= 0.070 BRe with Re=B(v;)/v

Le




4B.1 Flow of a fluid with a suddenly applied constant wall stress
a. Differentiation of Eq. 4.1-1 with respect to y gives

P v, _ 9 v, A w)\_ P,
ot o O w M)\ My

Then using Newton's law of viscosity, we get

2
J7,, y 97,

ot dy®

b. This equation is to be solved with the initial condition that
7,, =0 for <0, and the boundary conditions that 7,, =7, at y =0,
and that 7, =0 at { =co.

c. The solution is exactly as in Example 4.1-1 with
appropriate changes of notation, and the solution is given in Eq.
4B.1-1.

d. To get the velocity profile, we integrate Newton's law of
viscosity:

0 1 e T y
va v, = _—/;jy T, dy or Of (1 erf r)dy
Changing variables we get

T, oo
= ;0\/4 vt_[y/m(l — erfu)du

=%—m[71;—e'y2/4”—%(1 erf\/y—vt)]

The velocity at y = 0 is then

vx(O,t)=% AV g, |

T \ mup
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4B.2 Flow near a wall suddenly set in motion (approximate solution)
a. Integration of Eq. 4.1-1 over y gives

9%v, o [
pjo —dz B, Té‘y—zdz whence 8; :
y:

Since the velocity gradient is zero at infinite distance from the plate,
we end up with Eq. 4B.2-2.

b. We introduce the variable n=y/5(t). Then when Egs.
4B.2-3 and 4 are substituted in Eq. 4B.2-2, we find

%5(t)IJPUw(1 -3n+%n°)dn=-po., (—% +3 n2)|n=0 %

- Then after dividing by pv,, and evaluating of the integral, we get

34 5m=3y
gdto "2

1
5(t)

c. Eq. 4B.2-5 when integrated gives

(see Eq. 4B.2-5)

[[ods=4v[dt or &(t)=+8w

Then the velocity profile is given by

3 -
&zl—é(—L)+—1-(——z—) for 0<y<~8vt

Vo 2\~8vt) 2\ V8vt
—vi=1 for y=+/8vt
v



4B.3 Creeping flow around a spherical bubble
a. According to Eq. B.1-18, the vanishing of the shear stress is

d vg) 1dv d 1{ 1 81//} 18{ 1 81//}
R G P a2 Vil 29) - dVi_g
r&r( r ) 7 o0 0 Orr&r(r rsin0 or ) 790 Fsin6 96

In the second form, we have inserted the expressions for the velocity
components in terms of the stream function from the last line in

Table 4.2-1. Next we insert ¥ = f(r)sin’ § and obtain Eq. 4B.3-1.
b. Equations 4.2-7 through 10 are still valid for this problem,
as well as the values of C;=-1v_, and C, =0. Hence we have to

determine the remaining constants in f(r)=C;r™ + C,r by requiring
that Eq. 4B.3-1 be valid at r = R, as well as f = 0 at r = R (Eq. 4.2-3).
These boundary conditions lead to C; =0 and C, =3v_R. Then Egs.
4B.3-2 and 3 follow directly.

c. When the velocity distributions in Eq. 4B.3-2 and 3 are
substituted into the equations of motion (Egs. B.6-7 and 8), we get

P uvw)(RT P (,uvw)(R)z )
:2 _— —_— = — -
> ( 5 » cosO and 20 b sin 6

Integration of these two equations gives

P= —(-‘%‘4)(5)2 cos@+F(6) and ® = —(H%‘i—)(—]i)z cos 6+ G(r)

4 r

In order for the solution to be unique, F(0) and G(r) must be equal to
a constant. If we require that the modified pressure be equal to p, at
z = 0 infinitely far from the sphere, we then get

2
P =Py —PYZ —(%)(%) cos O

d. The z-component of the force acting on the sphere is

F,=-[2"[7(5.[5, - {p5 +1}))

_ R sin646d¢
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=—-27R?[(pcos 6+ 7,,c0s 0 — 7, 5in 6) . Sin 646

r=

where Egs. A.6-28 and 29 have been used for getting the dot products
of the unit vectors. Then we use the result of (c) and Egs. B.1-15 and
18 for the components of the stress tensor (along with Egs. 4B.3-2
and 3) to get the three contributions to the force:

cos 0sin 6d6

v\ R 2
F,,=-27R’ fon(Po P8z~ (HR—)(?) cos HJ
r=R
=47R’pg + 4 muRv,,
F,, =-27R? j:(—zu %Ur' -cos e) sin0do
r=R

= +47muR%v f:(% . cos? 6)
r

sin 646=% muRv,,

r=R

(~sin 0)sin 640=0

r=R

F =— 2 - Z1Z6 —-Z70
5 = ~27R I"( 'u)(ré?r( r )+r 89)

When these are added together, we get Eq. 4B.3-5.
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4B.4 Use of the vorticity equation

a. For the postulate v, =v,(x) the vorticity w=[Vxv] has
but one component w, =-dv,/dx. Then at steady state, the y-
component of Eq. 3D.2-1 is

(v -v)( ”Z;) - sz(%) (W V),

But v, is postulated to be zero so that the last term drops out. Also
the first term drops out, because v, and v, are zero, and v, is

postulated to have no z-dependence. Consequently the equation
simplifies to d°v, /dx> = 0. Integration gives

v,=3Cx* +Cx+C; or  v,/v, .. =D E*+D,E+D,

where we have redefined the integration constants. From the three
boundary conditions it is found that D, =-1, D, =0, and D, =1, Eq.
4B.4-1 results.

Then the z-component of the equation of motion becomes at
steady state

ar 2 dw d*v
V), =-2" 4 uv 0=-2"+
p(v-V)ov, o, tHVu, or o HH

z

dx?

Knowing the velocity distribution we can evaluate the second
derivative of the velocity and get the pressure distribution thus

P 2 | 210, max
O=——d;-+,uvzlmax(——é§) and 'ﬂoo —-?(Z)—‘-—BZ—'—Z

For z = L, this gives v, .., = (P, —®,)B*/2uL in agreement with Eq.
2B.3-2.

b. Since it is postulated that v, =v,(r), the only nonzero
component of of the vorticity vector is w, =—dv,/dr. Then the 0-
component of the steady-state vorticity equation is:
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(v 92 —i—a—+v —a—)w =
"or r 20 *az) ° -
v[i( ) 182w9+92w9+_2_8w,)
17 rar 20> JdZz* r* 90
(i G v 150+ 2w, 2
’ 8r rade r © oz
This simplifies to

d(1d( _do,
dr(rdr( dr)) 0 or v,=1Cr*+C,Inr+C,

This is the same solution found in the soution to Problem 3B.6. When
the two boundary conditions and the conservation-of-mass
condition are used, we finally get the solution in Eq. 3B.6-2.

To get the pressure distribution we use the z-component of
the equation of motion, which is

d® 1d(dv)
O=——+u

dr rdr\_ dr

When the velocity distribution of Eq. 3B.6-2 is inserted, we get

dP  4po,  (1-x%)+26’In(Vk)
dr  R*(1-«?)(1-?)-2(1+ x*)In(V/x)

0=-

This may then be integrated to get the pressure distribution.
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4B.5 Steady potential flow around a stationary sphere
a. The boundary conditions are:

(i) as r—> o, v—>1v,9,, or by using Egs. A.6-28 and 29

as r— oo, v, =v,_cosf and v, =-v_sinO
(iiatr=R, v, =0
(iii)at z=0asr— o, P> ®,

b. Since v=-V¢,wehaveas r— o

-9¢/dr=v,cos6 and —(1/r)d¢/d0 =-v,,sin O

When these equations are integrated we find that ¢ =-v_rcos9,
Thus we feel that ¢ = f(r)cos@® may be an appropriate trial function.

c. We next write the 3-dimensional Laplace equation in
spherical coordinates (for a system with symmetry about the z-axis)

12a8), 1 () g

r2or\ dr) r’sin@ a0

Into this equation we substitute the trial velocity potential and get

%%(r’- gir) - 2{2— =0 which as the solution f = Cr+ Czr“2

since this is an "equidimensional” equation of the form of Eq. C.1-14.
d. Application of the boundary conditions then gives

2 | 2
f= —va[% + %(%) ] and ¢= —va[% + —;—(%) ]cos 0
e. Then from the components of v=-V¢. we get Egs. 4B.5-2
and 3 by differentiation.
f. Then from the equation of motion for steady potential flow
p(V%—vz) =-V®P (see Eq. 4.3-2)

By integrating the components of this equation we get
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_P =Pvi{[1—(§)3]cosz 0 +[1+%(§)3}st 9}+C3

The integration constant is then obtained from the boundary
condition given in (a): C; =-®, - pv2. Then when the modified
pressure is evaluated at the surface of the sphere, Eq. 4B.5-4 is
obtained directly.



4B.6 Potential flow near a stagnation point

a. At the origin of coordinates (z = 0) the complex velocity
dw/dz = —2v,z is zero, which is a stagnation point.

b. By taking the real and imaginary parts of the complex
velocity, we get from Eq. 4.3-12: v, =2vyx and v, = -27,y.

c. When v, is positive, the fluid is flowing toward the surface
y = 0 in the upper half plane. The magnitude of v, specifies the speed

with which the fluid is flowing: v = [vZ + v} = 20,7,



4B.7 Vortex flow
a. By using Eq. 4.3-12, we find that

dw il (1) zF( ) ir( x-iy :
—— = > 5 =—Ux +Z'Uy
dz 2m 2a\zz) 2m\x"+y

in which the overbar indicates the complex con]ugate Equatmg the
real and imaginary parts gives

r y I' (sin@ r X I' (cos@) -
Ur =" 2, 2| 5 7 Oy = 2 2|
2\ x“+y 2n\ 7 2\ x“+y 27\ 7

The components in cylindrical coordinates are

. . (1
v, =v,c080+v,sin0=0; v, =_vxsm9+vyc039=§;(;)

b. The forced vortex is given by v, = Qr in Eq. 3.6-37.
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4B.8 The flow field around a line source

a. For this purely radial flow v, =v,(r) and the other two
components are zero. Then V?¢ = 0 simplifies at once to Eq. 4B.8-1.

b. Integration of Eq. 4B.8-1 gives ¢ =C,Inr +C,. Then, since

v, =—d¢/dr, we find v, =-C, /r. Next we calculate the volumetric
flow rate per unit length thus

I'= foznv,rd() =-27nC, whence v, = %r.

The pressure distribution is then obtained from the radial component
of the equation of motion

e (L) L)
p27tr 2ar®)  dr

Integration then gives

P, I\ = 1 p( r )2
=p| — = P —-P=E
J}P AP p(Zn) fr( r3)dr or . >

418



4B.9 Checking solutions to unsteady flow problems
a. Substituting the solution of Eq. 4.1-14 (or 15) into Eq. 4.1-5,
we have to verify that

s ehe T )= a1 e an)

We have to use the chain rule of partial differentiation along with
the Leibniz formula

or

- e o) )

When the definition of 7 is used, the above is found to be an identity.
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4C.1 Laminar entrance flow in a duct.

a. Calculation of the mass flow rate according to Egs. 4C.1-1 and 4C.1-2 gives

w = p(v)W

—pveW/ [ )]dy+pveW/

= pv.W [6 — —] + pv.W[B — 8] = pv. W [—g + B]

Equating the first and last expressions for w, we get (with § < B and A = §/B),

B 3
ve(z) = (Uz>m = (Uz)g*_‘z

The following related equations will prove useful in part b:

dv, = ( )___3 a4
dz I (3— A2 dx
dve , ., 9BA dA
ea_e: z o
v T BT A @
d d 3 \°
L= 2 {((vn?ﬁ %) BA]

°h. The boundary layer in this system lies between y = 0 and y = §, so those
limits suffice for the integrals in Eq. 4.4-13. Evaluation of the terms in Eq. 4.4-13
(divided by p) according to the results in @ then gives:

av,,l _ 2vv, _ 6v(v,)
dy lv=0 " " § BA(3 - A)

5 1
dix/o Uz (Ve — vz )dy = %(”35)/; [(2u — u*)(1 ~ 2u + v®)]du with u = y/é
= ;;(035) /0 1[2u —4u® + 2u® —u® + 2u® — w]du
- %(525)[1 — (4/3) + (2/4) — (1/3) + (2/4) — (1/5)]

- ooy [Z494] 42

G Ay | g 219
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dv, d !
? / (ve — vz )dy = veé ve/ [1—2u+ u®]du
dz J,
= ve5
A
= 9(v,)’B

(83— A)3 7 /3
With these substitutions, Eq. 4.4-13 gives

A
G AP d =SE

i = Blun)? | G5 | T 151+ 000,

B(v;)? dA [54 +18A+ 45A]

T 3-APdr 15
_ B(v)? dA [54+463A
(83— AP dz 15

Multiplication of both members by (5/3)A(3 — A)/(B(v.)? gives

10 v _64+74%dA
(v;)B2)  (3—A)? dz

in agreement with Eq. 4C.1-4.

c. Integration of the last equation with the initial condition that A = 0 at
z = 0 gives
ve 1 [26s+7s2

o) B 10, Bosp®

From integral tables we get the formulas

/(a+bs)2 [ln(a+bs)+ +b]+c

a2

a+ bx

s? -1
/mdsz E{ [a—}-bx —2aln(a+b:z;)—

which yield the definite integrals

[ &= [=(57) +574]
/()A(—é—i%:;ds= [(3—A)—6ln<3—3A> —334]

}+C’

4



and the solution

1()(—1):—/;5—2*:6[ln(3;A>+3fA} +7[(3—~A)—6ln(3—3A>—33A}

:7A+48ln<3_A) L84 . 83

3 3-A 3-A
B 3—A\  6A—21(3—A)—63
-7A+481n( 3 )+ A

3—-A 27A
—7A+481n( 3 >+3——A

in agreement with Eq. 4C.1-5.
d. Setting A =1 and z = L. in the last equation gives

Lo=— [7 +481n(2/3) + 27}

~ 10 92
= (0.1)[7 — 19.462325 + 13.5] = 0.104

in agreement with answer (d).

e. Application of Eq. 4.3-5 to the region §(z) < y < B, with v, neglected so

that v = v, there, gives

1
3 pv? + P = constant

Insertion of the result of part a gives

1

2 :
5,0(1),)2 (3—3—4) + P = constant

Evaluating the constant at z = 0, where A = 0 and P = P,, we get

1, of 3\ . 1,
5P(vz) (m) +P = 5p(ve)” +Po

P - Py= 1 plo)? [1 - (3_32)2}

or
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4C.2 Torsional oscillatory viscometer

a. The equation for the rotating bob in a vacuum is just
"moment-of-inertia times angular acceleration equals the the sum of
the torques." In mathematical terms this is

d*0,
dt?

in which —k6 is the "restoring torque."” The solution to this equation
is

Oz =C, cos \/%t +C, sin %t = C, cos w,t + C, sin wt

This states that the bob is oscillating with a frequency @, =k/I,
which is called the natural frequency.

b. If there is a fluid in the gap, the equation of motion of the
bob must contain both the "restoring torque" and the torque exerted
by the fluid in the 6 direction on the solid surface that is
perpendicular to the r direction:

I 7 =—kOg .—(ZnRL)(R)(—T,(,L:R)

Here (ZHRL)(—T,{,[r:R) is the force, and R is the lever arm. Next one

uses Eq. B.1-11 to replace the shear stress by the appropriate product
of viscosity and velocity gradient. This gives Eq. 4C.2-1.
’ ¢. Equation 4C.2-3 is obtained from simplifying Eq. B.6-5.

d. The choice of the variable x is convenient, since x = 0 at the
surface of the bob, and x =1 is the inner surface of the cup. There are
many ways to select the other dimensionless variables, but the
choices we have made allow the viscosity to appear only in the
parameter called M. Equations 4C.2-11 and 12 follow immediately.

e. From Eq. 4C.2-14 we get for the bob angular displacement

Ox =_9i{01‘§ exp(i@r)} = (Gﬁr +163; )(cos OT+isin®7)

— [s) —_— ['e) 3 J—
= 0O, cOsWT — O, SINOT

4-27



Here 6y, and Og; are the real and imaginary parts of the complex

amplitude 3. The angular displacement of the bob can also be
written in terms of an amplitude and a phase shift:

O = Acos(@7— o)== AcosDTcosa— Asin@sin o

When tha hngmp i
N % ]

o far tha halh Aicnlannmant ava_Aa~siabad cira

A
(m

XZ'_ =
- 0 . 3 = 4

find that Acos@7 = 6y, and Asin @7 = 6g; from which we get

03 _ 316}

and tano = 0 = 91{913}

Or

for the amplitude and the phase angle respectively. The ratio of the
amplitudes of the cup and bob is then

o d2 o do®°
f. iw¢° =M dfz ¢

dx x=‘

and (iw)’ 03 = -63

0

g. The differential equation for ¢° is then

d’¢°  [im
dx?

¢ =0 with ¢°(0)= A6i® and ¢°(1) = A0 i@

The solution to this equation with the boundary conditions is then

inh
0° Aza)6°coshwax+Azw(6§R—0°cosh fz]\a/;)s \Jio/Mx

sinh+/io/M

Differentiation of this with respect to x gives Eq. 4C.2-16.
h. From Egs. 4C.2-12, 14, and 16 it follows that

—\2 MAiw io [iw
0y =-02° + 0%, — 09 cosh .| —
(Zw) R R Sth ( aR R COS M)

This eauation mav be solved for 02. and Ea. 4C.2-17 results.




i. When the hyperbolic functions are expanded in Taylor
series and the terms arranged in powers of 1/M, we get

0% i@ (1-@7)sinh.fio/M
—2= =cosh,[— + — —
M MAiv .io/M
1(i@m) . 1(iz)’ (1-2°)  1(im
=l1+— —|+—| — | +--- e 1+—| — |-
2\M) 4\ M MAw® 3\ M |

1_[@@_} 1 F(I-EZ)E_EZ},...

M?*| 3'Aw 41

From this, Eq. 4C.2-18 follows. The results of part (e) can then be
used to get the amplitude and phase angle.
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4C.3 Darcy’s equation for flow through porous media.

(a) In Case 1, the equation of state is p = py. Hence, Eq. (4C.3-1) gives
(V [ ] ’Uo) =0

Insertion of Eq. (4C.3-2) for v,, with p = pg and g = —V®, gives

(V o [Vp+ pOV‘i)]) =0
or
VP =0

in which P = p+ p0<i> is the “modified pressure” defined in Chapters 2 and 3 for
systems with constant p.

(b) In Case 2, the equation of state is p = poe”?. Hence,
1
B

Expressing the divergence term of Eq. (4C.3-1) via Darcy’s equation, we get

Vp = pofe’PVp = pAVp, so that pVp = =Vp

=(V ¢ pwo) =+ (V # p[Vp— pg])

K

= (VelpVp - )
= g[%vzp —(Vepg)l
Inserting this result, multiplied by pg/«, into the smoothed continuity equation,
we get
#gg =V?p—B(Vep’g)

(¢) In Case 3, the equation of state is p = pop. Hence, AVp = poVp and
Vp = (1/po)Vp. Then Egs. (4C.3-1,2), with the pg term neglected, give

e = (Ve pl- V)
=+(V e p—Vp)
£Po
K
= —(VepV
W)O( pVp)
K 1
= —(VeV(zp?
W)( (57%)
_ K 2 9
21p0

426



Hence,
2eppo Op 2 2
SRR vy
Kk Ot P

(d) In Case 4, the equation of state is p = pop™, giving p = (p/po)*/™. Thus,

1 1/ e
Vp=—p, /" pH/mM=1y)

m

whence . )
pvo = ———py ™™V
um

so that Ky
~(Vepvo) =+-py (Ve p*/™Vp)

_ K -1m m v (m+1)/m]
,umpo (V.[m—l—l P

With this result, Eq. 4C-1 gives

1/
((m + 1)eppy m) Op V2 p(mt1)/m

K

ot
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4C.4 Radial flow through a porous medium

a. For the radial flow (in cylindrical coordinates) of an
incompressible fluid Egs. 4C.3-1 and 2 become

O=—1—4—(rv(,,) and T, - _kd®

u dr

Integrating the first of these equations gives v,, =C,/r. Substituting
this into the second equation and integrating gives

C11nr+C2=—E'd° or D;Inr+D,=-F

where new constants of integration have been introduced. These

constants are determined from the boundary conditions:

B.C.1: D,InR,+D,=-P,

When the integration constants have been determined, the pressure
distribution is found to be

®P-®, _ In(7/R,))
Pz“Pl h'l(Rz/Rl)

b. The velocity distribution is then given by using Darcy's law

_EE.__,_E(@ _ )_1__1=_£(a°2“0°1)
B dr pu'? T VIn(Ry/R)r pr In(R,/R,)

vOr

c. The mass rate of flow through the system is

2nkh(®, - ®,)p

w = P|ve, (R, ))27Rh =
Aleo (R PR == e o)
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4D.1. Flow near an oscillating wall

The problem is to solve Eq. 4.1-1, with the initial condition
that v, =0 at =0, and the boundary conditions that v, =0 at y =<
and v, =v,coswt at y=0. When we take the Laplace transform of
Eq. 4.1-1 and the boundary and initial conditions, we get

2
-pﬁx:vdv; withz?xzvoTp—zaty:Oand5x=0aty=oo

Yy p-t+w

This ordinary differential equation is easily solved with the boundary
conditions to give

R —)T

p2+w2

This may be inverted by using the convolution theorem, or else by
consulting a table of transforms (see, for example, Formula #11, on
p- 246 of Vol. 1 of A. Erdélyi, et al., Table of Integral Transforms,
McGraw-Hill, New York (1954)). The use of the table leads directly
to Eq. 4D.1-1.
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4D.2 Start-up of laminar flow in a circular tube

a. The partial differential equation, initial condition, and
boundary conditions are

8vz=3°0-’0°L+ li(ravz)
Pk T

with v,(r,0)=0, v,(0,t) = finite, and vz(Rv,t) =0. We now introduce
the following dimensionless variables

v, _ g=1 S
®, - P, )R?/4uL’ R PpR?

i

Then Eq. 4D.2-1 is obtained, along with the initial and boundary
conditions: ¢(&,0)=0, ¢(0, 7) = finite, and ¢(R, 7)=0.

b. The asymptotic solution is obtained by setting the time
derivative equal to zero and solving the ordinary differential
equation with the boundary conditions. Then the partial differential
equation for ¢,(¢&,7) is

aq)t __l a (ga(bt)
ot “gag O&

with ancillary conditions: ¢,(£,0)=¢_(£), ¢,(0,7)= finite, and

¢:(1,7)=0. We now try a solution of the form ¢,(&,7)=E(&)T(7).
This leads to two ordinary differential equations

dT » 1d d= 2
T __ T  and 1dfed=), pm—g
oo el S

which have as their solutions

T=Cyexp(-a’z)  and E = C ], (&) + C, Y, ()

in which the Cs are constants, and ], and Y, are zero-order Bessel
functions. Since Y, is not finite at the tube axis, we must set C, equal
to zero. Since E must be zero at the tube wall, this will occur only if
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Jo(a) =0.This will happen only at ;,,,;, -, that is, at the zeroes
of J,. Hence there are many solutions to the E-equation that will
satisfy the boundary conditions: &, =C,,J,(,&). Therefore, the
general solution to the partial differential equation must be

o, = ZB exp(-027)]y (@,)

The constants B, are to be determined from the initial condition,

(1-&2)= ianf()(ang)

This is done by multiplying both sides of the last équation by
Jo(a,,€)E and integrating from 0 to 1:

o(@nO2(1- £ = 3B, [ o, )2

Because of the orthogonality properties of the Bessel functions, the
only term on the right side that contributes is the term for m = n. The
integrals may then be evaluated using some standard relations for
Bessel functions. This gives

4]\, i 8
el @) omwbicn B, =t

and this leads directly to Eq. 4D.2-2.
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4D.3 Flows in the disk-and-tube system
a. If the tangential component of the Veloc1ty depends only
on r and z, then the equation of motion simplifies to

d(19 v,
8r(r8r( ))Jr 07> =0

We try a solution of the product form: v,(r,0)= f(r)g(z). When this
is substituted into the partial differential equation above, and the
resulting equation divided by f(r)g(z) we get

1d(1d _ 1d’g
fdr(rdr(rf))_ g dz*

The left side is a function of r only and the right side a function of z,
only and therefore both sides must equal a constant; we call the

constant —c*. Then we have two ordinary differential equations to
solve:

d 2p d’g . _
di&dﬁfﬂ+cf‘ozmd a2 870

The second equation has the solution g = Acoshcz + Bsinhcz, where
A and B are constants. The requirement that the velocity be zero at z
= L, gives

sinh[cL(1- [z / L])]
coshcL

g=-B

where B is a constant. The first equation can also be written as

A G

which is now recognized as a Bessel equation of first order, with the
solution f = M]J,(cr)+ NY,(cr), where M and N are constants. But
since Y; becomes infinite at 7 = 0, only the ], term is needed, Since f =
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0 at at 7 = R, we must have J,(c,)=0. There are infinitely many c,
that satisfy this equation. Hence the solution is of the form

sinhc,L(1- ()
coshc,L

v6(£,) = ilB,Jl(cné)

The coefficients B, are determined from the initial condition
Rgé = ZBnll(cng)
n=1

This is done by multiplying the equation by J,(c,,£)¢ and integrating
over ¢ from 0 to 1 and making use of the orthogonality relation.
This gives

RO[J1(cn€)E%E = 3B, |1 (.1 (enf)édE or

Rl a1 c0f or B, =KL

Cm " Cm]2 (Cm)

Thus the steady-state velocity distribution is

ve(é:{) - ZRQi ]1(Cn€) SinhCnL(l_ C)

n=1 Cn]2 (Cn ) COSh CnL




4D.4 Unsteady annular flows
For the tangential annular flow (part (b)), the equation of

motion for v, (r,t) is

809 di1d
8t 8rlir 8r(rvg):|

with v,(7,0)=0, ve(&kR,t) = kRQ,, v,(R,t)= RQ,. We introduce these
dimensionless variables:
Vg Q

R©Q,-9) T o,-9

| t
5:—/ T= p'LIl‘{Z, ¢:

Then the partial differential equation for ¢(¢&,7) becomes

3¢ J
o 5&’[255(5"’)]

with ¢(£,0)=0, ¢(x,7)=-ka, ¢(1,7)=1-«.
For the steady state (i.e., at infinite time), we have the
solution

¢°°=£1_a(1_2’(2)}5"( K> 2)15A€—Bl

1-k 1-x° ) & &
Hence the time-dependent solution is

O(E,7)=9..(E) - 0,(&,7)-

Here ¢,(&,7) is the transient contribution, which satisfies the

partial differential equation for ¢(&,7) , but with boundary and

initial conditions: ¢,(x,7)=¢,(1,7)=0 and ¢,(£,0)= ¢..()
Application of the method of separation of variables with

0,(E,7)=f(€)g(7) gives
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1dg_ . _1d(1d
gdz fdé(édé‘(éf))

where —b® is the separation constant. Thus we arrive at two
ordinary differential equations which can be solved (the second-
order equation is a Bessel function ). Since this is a Sturm-Liouville
equation, the complete solution is a sum of eigenfunctions multiplied
by the appropriate exponential function:

0(6,7)= 5.2 (0, 8)e

in which Z,(b,£) is the superposition of the two solutions to the
Bessel equation:

Z1(6:8) = J1(0,&) Y (by) = T1(By ) Y1 (B, E)

These functions satisfy the boundary conditions in that Z,(b,£)=0 at

¢ =x. The conditions that Z;(,£)=0 até=1 determine the
eig_epvalues b.. The C_can then be determined from the initial

T

¥ I ——

E meeee———a.,y . _________________|

o0

¢°o(§) = chzl(bné)

n=1

When this equation is multiplied by Z, (bm§)§d§ and then integrated
over the domain of interest, we get '

o L(Aag-Be)z, (b, 6)ae

SR AT

A2y (b,) - K224 (bk)] + BY [ Zo(B,) ~ Zo(b,K)]
i 123 (6,)- 23 (b))

The integrals are performed by making use of a mathematical
handbook. The expression above may be simplified by using



i. The expressions for A and B
ii. The defining equation for the b,
iii. The relation J,(x)Y,(x)—J(x)Y,(x)=-2/7x

Then it may be shown that
2 J,(b,x) 2 1
Zylb,)=——— "~ z =——=
o(bn) b, J,(b,) and o(B:¥) b, K
and also

71 (b, )[(1- )], (b, k) + ax], (b, )]
IHOBRIHOY)

in which « is the dimensionless angular velocity. Then the complete
expression for the transient behavior in tangential annular flow of a
Newtonian fluid is

e et
‘”i ]1(bn )[(1 ",a)h(bn K) + aK]l(bn)]Zl(bng) ot
73 (Baxc) = JE (b4)]

Complete tables are given in the original reference. as well as some
typical velocity profiles. Also, a Laplace-transform solution is given
for small times, for which the expression above converges too slowly
to be of much value.

C,(x,a)=
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4D.5 Stream functions for three-dimensional flow.

(a) The divergence of the curl of A is }_.(8/9z;)[V x A]; which gives, according
to Eq. A.4-10,

2(3/335,)2 ze,]k(a/ax,)Ak — ZE Eamk 38 gl;
0 Ag 82Ak
- ZZZEW [6$i3$j B 0z ;0z; =0

T g#i

Thus, the mass flux function pv = [V xA] satisfies the continuity equation for
steady flow (or for unsteady flow with constant density). Here use has been made
of the relations €;;z = —¢jix and €;;x = €;xx = 0 contained in Eq. A.2-15.

The divergence of the product expression for pv is
o 0
(Vo [(Vh1)x(Vp2)]) = Z (‘5 5. [E 8 aﬁl E‘Sk 8:/:2} )
0y Os
_ZZZ(G 6 X6 8:1:,— (Bx, aiﬂk)
= ; ; ;(51 [ ] 8]k161)axi (837] al'k)
= Z Z Z Eijkai(aj'l/)13k'l/)2)
i j ok

= Z Z Zs,‘jk(aijl/)laklbz + aj¢1aik¢2)
i J k

= €123(012%1 0392 + 0291 013%2)

+ €231(023%1 0192 + 0311 021)2)

+ €312(031%1 022 + 0141 0321)2)

+ €132(013%1 022 + F3P1012%2)

+ €321(03291 012 + 0211 0311)2)

+ €213(021%103%2 + 0141 0231)2)

= O129103%2(€123 + €213) + 0291 013%2(€123 + €321)
+ O23h1011b2(€231 + €321) + O31P1021%2(€231 + €132)
+ 051910292 (€312 + €132) + B1105292(€312 + €213)
=0

Thus, the product expression for pv is divergenceless. Here Eq. A.2-15 and the
symmetry relations 8;; = 0;; have been used. Stream functions of this form have
been used by several authors; see footnote 1 of §4.2.
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(b) In each of the coordinate systems shown in Table 4.2-1, the two nontrivial
velocity components for incompressible flow are the corresponding components of
curl(—83A43)/p = curl(—63%/hs), as may be verified by use of Egs. G, H and I in
Tables A.7-1,2,3. Thus, for Cartesian coordinates with v, = 0 and no z-dependence,
hs = h, =1, and Eq. A.7-18 (with v read as 831/ h3) gives the velocity components

vy = curl,(—A)/p = ‘“‘g}‘;}‘ and vy = curly(—A)/p = —{—%—f—

For cylindrical coordinates with v, = 0 and no z-dependence, hs = h, =1 and Eq.
A.7-18 (with v read as 83t/ hs) gives the velocity components

10 0
vy = curl,(—A)/p = —;a—:ﬁ and  wvp = curlg(—A)/p = +-6—1f

For cylindrical coordinates with vy = 0 and no #-dependence, hg = hg = r and Eq.
A.7-18 (with v read as 831 /h3) gives the velocity components

v, =curl,(-A)/p = —%%? - and v = curl(—A)/p = +%%§

For spherical coordinates with v4 = 0 and no ¢-dependence, h3 = hgy = rsin§ and
Eq. A.7-18 (with v read as 839/ h3) gives the velocity components

1 9y 1 8¢

vy = curl(—A)/p = _rsinH% and vg = curlg(A)/p =

rsiné Or

(c) Consider two surfaces, ¥1(z1,z2,z3) = C1 and ¥a2(z1,z2,23) = C2, which
intersect along a line £. At each point on L, the vectors Vi; and V), are normal to
both surfaces, and the velocity vector v = [(V)1)x(V1)2)] is consequently tangent
to £. Thus, the intersection of any such pair of surfaces is a streamline. In Fig.
4.3-1, we may choose 91 = ¥(r,8) and 1, = z; the resulting streamlines in a plane
of constant 1, are shown in the figure.

(d) Read v in Eq. A.5-4 as the vector A whose curl is the local mass flux pv.
Then the net mass flow through S is

/S(n o [VxA]dS = fc(t * pv)dC

for steady flow, or for unsteady incompressible flow. A no-slip condition v = 0
on C requires [VxA] = 0 there, but this derivative condition does not require the
vanishing of A nor of the net mass flow.
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5A.1 Pressure drop needed for laminar-turbulent transition.

The minimum value of Re= 4w/(rDpy) needed to produce turbulent flow in
a long, smooth tube is about 2100. Poiseuille’s law, Eq. 2.3-21, holds until this
critical Re value, giving

w = W(Po - PL)R4

SuL P for Re<Recrit

Hence, the pressure gradient needed to initiate the laﬁlinar-turbulent transition is

Suw
wR4p

_ [ 8 mDpRecrit
 \ 7Rt 4

4 2
~ ;%3(2.1 x 10%)

|dp/dz| =

The other specifications for this problem are:
pu =183 cp = 0.183 g/cm-s; p = 1.32 g/cm?; R =267 cm
The pressure gradient required to initiate turbulence at the given conditions is then:

. (4)(0.183 g/cm-s)?
™ (1.32 g/cm®)(2.67 cm)?
~ (11.2 dyne/cm?®)(0.1 Pa/(dyne/cm?))(10° cm/km)

~ 1.1 x 10° Pa/km

~ (1.1 x 10° Pa/km)(1.45 x 10™* psi/Pa)(1.602 km/mile) = 26 psi/mile

dp
dz

(2.1 x 10%)




5A.2 Velocity distribution in turbulent pipe flow.

‘a. Application of Eq. 5.4-4 gi\.fes

- _(po—pr)R _ ((1.0 psi)(0.25 ft)
°T 2L T\ (220 1)

= (2.367 x 107° psi)(6.8947 x 10 Pa/psi) = 0.1633 Pa

) = 2.367 x 10™° psi

b. For use of Fig. 5.5-3 we need the following additional values:

p = 1.0019 x 1073 Pa-s
v = 1.0037 x 1072 ecm?/s = 1.0037 x 107® m?/s
p =0.9992 g/cm® = 0.9992 x 10° kg/m?

v, = V/70/p = 1/(0.1633 kg/m:s?)/(0.9992 x 10° kg/m®) = 0.01278 m/s
vy /v = (0.01278 m/s)/(1.0037 x 10™% m2/s = 1.273 x 10* m™})
R = (3 in/(39.37 in/m) = 0.0762 m

At the tube center, y* = Rv, /v = (0.0762)(1.27 x 10*) = 970 and Fig. 5.5-3 gives
Vs Iy= r = 22.7. Consequently,

Vamax = 22.7v, = 0.290 m/s, vt = 2275, /V,max, and y/R=s%/970

We can now tabulate the time-smoothed velocity profile. Asterisked values of
U, /U.max are added here to give a better calculation of the mass flow rate in part

(d).

vz/ﬁzmax vt y+ y/R 6 _ T/R
(from Fig. 5.5-3)

0.0 0.0 0.0 0.0 1.0
0.1 2.27 2.27 0.0023 0.9977
0.2 4.54 4.55 0.0047 0.9953
0.3* 6.81 7.3 0.0075 0.9925
0.4 9.08 12.0 0.0124 0.9876
0.5* 11.35 18.0 : 0.0186 0.9814
0.6* 13.62 27.5 0.0284 0.9716

- 0.7 15.89 62.0 0.064 0.936
0.8* 18.16 170 0.175 0.825
0.85 19.30 250 0.258 , 0.742
0.9* 20.43 392 0.404 0.596
1.00 22.7 970 1.00 0.000

c. See the graph on the following page.
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d. The estimate (7,) ~ 0.850,max gives (v;) ~ (0.85)(0.290 m/s. Hence,

Re_ D(T:) _ (2 0.0762 m)(0.85)(0.290 m/s)
S (1.0037 x 10~° m?/s)

so the flow 1s certainly turbulent.

= 3.7 x 10°

e. The mean value of vt over the flow cross-section is

1
(v*) = / vtd(r/R)?
0
Applying trapezoidal quadrature to the values calculated in (b), we get

/ Ry = (U2

) [1.0000% — 0.9977%

-+

2.27 4 4.54
+ )[0 9977% — 0.99537]

-+

4.54 + 6.81
+ ) [0.9953% — 0.9925%]

-+

6.81 4 9.08
+ )[0 99252 — 0.98767]

908+1135

+

[0.9876% — 0.9814%]

.

[0.9814% — 0.97167]
13.62 + 15.89

-+

[0.9716% — 0.9367]

+

0.936% — 0.8257]
18.16 + 19.30

+

[0.825% — 0.7422
19.30 + 20.43

-+

)
)
15.89 + 18. 16)
)
)

[0.742% — 0.596%]

20.43 4 22.7
+ ) [0.596 — 0.000?

&
o
(22
(2pem
.
(11 .35+ 13.62
.
(2
S
(2yms
(202

Hence, _
() = (v )v, = (18:8)(0.01278 m/s) = 0.241 m/s
and .
w = WR2P(52)
= 7(0.0762 m)?(999.2 kg/m?)(0.241 m/s)
=4.4kg/s =9.71b,,/s



5B.1 Average flow velocity in turbulent tube flow
a. The ratio of average to maximum velocity is obtained as
follows for the power-law expression:

(57.) IMI (v /7, max)rdrd@ f ( r)l/nrdr
Z_)z,max .[()2”'[0 d d0 Rz R
=2[(1- &)V &dg —zﬁgl/" (1-¢)d¢
2( C(l/n)+1 é*(l/n)+2 )
(1/n)+1 (Yn)+2

s n[(2n+1)-(n+1)] 212
T (n+1)(2n+1) T (n+1)(2n+1)

b. For the logarithmic profile we have

(@) _

[

zZ, max Z, max

o',
v*_2_
2

Vv

NS

J' '[Og )rdrd@ . sz ( 1n Yo +/1)rdr

d Z max

Z maXx

20 v/v Ro. ).+ v _Yo
’_ zmax(Rv*j ]ny +/1)( y )dy (y \% )

l )R y)dy where y=R-r
K

20. 1RU:«- + + + 1(1 ) + 1 +2)
= Iny ——| =y Iny" -=
zmax(Rv,. y) K 2y s 4y |
Ro. /v
+/1Rv* * A—y’*]
1% 2 0

=_20* l(]n&’:_l)_l(llnm’* _l)+l,1
U, max LK 1% k\2 v 4) 2
=_v* llnRv* 31+/1}

v | K 1% K

z,max

In the above we have used the fact that in the limit as x goes to zero,
xInx vanishes.



5B.2 Mass flow rate in a turbulent circular jet

a. Immediately starting to differentiate the velocity compon-
ents with respect to the position coordinates is not the way to solve
this problem. It is much easier to solve if one introduces some
abbreviations in order to minimize writing:

i)-z (9 _ Cr

Z= U=
N0 0 z

[1=[1+1u?]
In terms of these quantities, the velocity components are

_2¢ Clu-1w’)
¢

Then we can calculate the derlvatlves appearing in the equation of
continuity:

JdZ _ 2C*  _2C* | Cr\_ 2C* 2C*?
oz —“zz[]z _22[]3 (E ) T2 -_zz[]z + zz[]3

Z
2
=~ (0 340)1¢)=- Bl

10 | 19(u*-1ut _1(2u—u3)c 2 1.a\3U(C
ror R)"?—é?( iy )"?( 7 s) et )W(Z)]

Thus the equation of continuity is satisfied. Next we get the expres-
sions for the terms on the left side of the equation of motion:

RIZ _ (C(u - i—uﬂ}(_ 2C3u] _2ChA(1-147)

or z[]? }22[]3 [P




92 _( 2C2 )[_zcz(l_%uz)J _ 4ci(1-3?)

oz | z[]? 22[]P [P

RZ 707 ACH(1-jw —qut)  aci(1+du’)(1-4u)

or oz [P B [P
4C%u(1-4u?)
- rz*[]*
The term on the right side is

19(,32) 12( _20u)) 12/ 2cw
rorl or) rorl \ Z22[P)) rarl zAP

) 1[4C2u C_3C2u3._C_)_ 1(4C3u(1—%u2))

r

AP z ] z) r 2]

Therefore the equation of motion is satisfied.
b. The mass flow rate is
2C2vY rdr

w(z) = 2 ~pv,(r,2)rdrd6 = 27p -
J‘O -‘-O oz 0 [1+711_(C3r/z)2 ]2

=27Z’().2C§v(*) 1 ds

z 27 [14-%(C3/z)zs]2

2.,,(t
=27 _Z__C_?il__l - 5 1 5

2 2 HC/z)[1+1(Co/2)s] :
=2 265V 14z 8mpvit)z



5B.3 The eddy viscosity expression in the viscous sublayer
We start with Eq. 5.3-13 is dimensionless form

3
1{ v 1 y*
oyt 1-= 2
? y{ Z(U*B)y 4(14.5) * J

from which

do* + )3
U+ =1- v y+ - Y +...
dy v.B 14.5

For slit flow with thickness 2B, we have

= =@ .=t _ (1 Y 1)\ 40,
Tye = Tyy T Ty = 10(1 B) <,u +u ) ay

where the definition of turbulent viscosity in Eq. 5.4-1 has been used.
If now we write this last equation in dimensionless form, we have

T u®
W;- =_1+( VB)y+ (1_*___) do*
Jo /i V. dy’*

Substituting the dimensionless velocity gradient obtained from Eq.
5.3-13 into this expression gives

3
v y*
-1+ T=-1+ + +oee
(U*B)y (v* )y (14 5)
& 0 & 4+ )2
_B LB 14 y++“_ AN
u u \ v.B u (14.5

Terms 1 and 2 on the left exactly balance terms 1 and 2 on the right.
Term 3 on the right will exactly cancel term 4 if the expression for the
turbulent viscosity given in Eq. 5.4-2 is used. With the same
substitution, terms 5 and 6 on the right side are of higher order and
can be neglected in the vicinity of the wall.




5C.1 Two-dimensional turbulent jet
a. The total flow of z momentum in the jet is given by

J=[" [ pv2dxdy = Wpv? . z[ " f2dE

Since | is constant for all values of z, we conclude that T, ., o 1z.
b. By integrating one of the stream-function equations we get

W o< [T,dx oD, 0 [ fdx o< 272 [fA& -z o< 2V?

The momentum flow | [=] Lm/t‘2 and 1/]/p[=]L2/t. But t//[=]L2/t also.
This suggests that

w(x,2)=\g—\[—v%F(é)

is the only form that can be put together for the stream function.

c. According to Eq. 5.4-3, the kinematic viscosity is the
product of band 7, ., in which b has dimensions of length and must
be some function of z. This leads to the fact that the kinematic

viscosity (which has dimensions of [?/t) can be constructed thus:

w(x,z)oc\g\/%p(g)v(t)xz.% % %

The third factor has been included in order to make the dimensions
come out correctly. The dimensionless constant A is then included,
but this quantity must be determined experimentally.

d. The z component of the equation of motion is

: 45, % =i(v(t)iz_’_z.)

ox

or, in terms of the stream function,
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Iy oy v _ 9 ¥
0z Ox*  Ox dxdz  ox ox?

Inserting the expressions for dimensionless stream function from (b)
and the kinematic viscosity from (c), we get

(G 58] () 2 )2 2 e

where f is a function of £. We next convert the derivatives with

respect to x and z to derivatives with respect to ¢ (indicated by
primes), to get

Ié & I/4

(2\/~ vaE z)(z_zp )
Vz 1 VZ irn o) 2 Z o
( Z F)(zsz ——z"z— 51: +F})—*/1-Z—3-P

Multiplying by z* and canceling two terms in the equation gives
%‘PF” 1 F/2 = AE"”

When we change to a new variable 7= ¢ /42, this equation becomes

iF (dF\" 14°F d(_dF)_1d°F
F——=+|—| === or —| F— ===
dn* \dn 2dn dn\' dn) 2dn
f- The final result in (d) can be integrated at once to give
Pili:ld—zf—+C’ or 4 p2_ &°F +2C’
dn 2dn? B dn an?

But at n=0, both F and and its second derivative are zero so that C’
=0.
g. Integration of the result iin (f) gives



h. Integrating this last result gives

F 1 F ‘
_‘-0 F2 J. d or _EarCtanhEZ n or F:-Ctanhcn

Then the time-smoothed axial velocity is

_ d z
vz(x,z)z__ég _b;( f I (g)J
_[JzdF1__ [T a1
PW dé& z pW dn 4)»
] C2 2 2 Cx
= / —sech“Cn = —sech® —
PWz 44 sech 1 sz 4/1 See 47z

i. The mass rate of flow at plane z is

w = .[gv f:p'v‘zdxdy

=Wp /pI{Vz l". sech2Cndr] 47z

=Wpz LC -2tanh x|; = 2CWpz I
pWz pWz
=2%/3A /JoWz

Thus we see that the mass rate of flow increases with the distance
from the exit of the slit. This is a result of the fact that addltlonal
fluid is dragged along by the jet.
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5C.2 Axial turbulent flow in an annulus
a. We divide the annular region into two parts, depending on
whether or not r is less than or greater than bR:

Region <: aR<r<bR
| ®, - P, )R( b? - a2
stress atinnerwall=|rrz|=( 0 L) (b a )

2L a
Region >: bR<r<R

l= (ﬁoo ‘?L)R(l_bz)

stress at outer wall = |z
2L

rz

To get the magnitudes of the wall shear stresses, we use the
expression given in Eq. 2.4-4, which is valid for laminar and
turbulent flow alike. Then, the friction velocity in the two regions is

< ®.—-%. )R 2 _ .2 2 _ .2
Region <: v:=\/}:g_:\/( 0 L) (b a )zv** b a

P 2Lp a a

= f9>_= w(l_b2)=v 1-p2

where v,, = \/(TPO —%®.)R/2Lp. Then the velocity distribution in the
two regions may be obtained from Eq. 5.3-3:

>
*

Region >: v

Region <: Uz( = 1( In (r=aR)or ] +AS=— (}/ O )+/1<
vy k° | v K v

Region >: vi = 1> In (R=r)o. ] +A” =— (yv )+/1>
v, ¥ | v K v

y being defined as y =r —aR in Region < and y = R—r in Region >.
b. The continuity of the velocity profile at r=bR gives a
relation between A< and A™:



i(]n[(Rv**)(b—a) b e’ }rf - m[(Rz;**)(l—b)m]wV

K 14 a
¢. The mass rate of flow through the annulus is
BR__. R _
w=27mp LR o rdr + 27rp.fbR o rdr

The first integral is:
27pvs j'b;:[—l-; ln( ﬂ’*_] +A° }dr
R x 14

= 27pv; jéb—a)R [?1; ln(ﬂ:/—*—) +A ](y +aR)dy

2 <
J-(b—a)(Rv,f/v)( 1 Inx + F)[x + aRv, )dx
0 <

K v

2 2 2 <

[i S ROV 3 JA N (U5 (xInx—x)
K<\ 2 4 K< v

+—21—}»<x2 +A<(—aRv* )x]

= nR2pvs [%[(b ~a)’ +2a(b- a)]ln(b - a)( R:: )

+A° [(b —-a)* +2a(b- a)] - %B(b ~a)’ +2a(b~ “)ﬂ
- nRzpvf(bz —az)[%]n(b— a)( R:f) +AS— 2’1(< - K1< b:l-a:l

= 27pv;

<

= 27U,

*GA|< *d/\l<

The second integral in the expression for the mass flow rate is then:

S(R| 1 VA PN
2700 j;[-’-(—m(-y-;—) +A }dr
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=27pv] j: (H’)[% h{&) +A” ](R ~y)dy

v
2 >
= 2mpv; ‘i f(l e /V)(———m +A>)(Rv —x]dx
v, ) °° K v
2 > 2 2
= 27pv; % [__I;Rv* (xInx x)——i)(x—lnx-—x—)
v, K~ v 4

(1-b)(RoZ /)

+A>(Rzz)x -A —zl—xz}
= R*pv; [7?;[(1 ~b)In(1- b)( R::J ~(1- b)]

—%{(1-17)2 In(1- b)( Rf ) - (- b)]
24> (1-b)- A (1-b)’|

= 7R%pv; (1- bz)[’(1 In(1- b)(Rv*) ’1>“l(%+11b)]

Vv

We now combine the two integrals and use the result in (b) to

eliminate A® in favor of A”; furthermore, we use the result in (a) to
introduce v,,. This leads to:

w = 7R’pv,, {A[}};ln( Rz"l** (1-b)V1- bz) + /1>}— B}

A=a (b2 -a?)” +(1-p2)"

N i e R o)

The expression for A does not agree with that of Meter and Bird, and
we conclude that their expression is incorrect.
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5C.3 Instability in a simple mechanical system
a. The centrifugal force acting on the mass is mQ%r=

mQ’Lsin 0. The gravitational force acting downward is mg. These
forces must have a resultant in the direction of the rod, and therefore

2 .
tanG:Zn——QL—Sln—e or cosO:——g:-,_—
mg | Q°L

If the angular velocity goes to zero, it would appear that cos 6 would
go to infinity!

b. However, this formula describes the relation among the
various quantities when the system is rotating and 68 > 0. When as Q
decreases, the right side of the equation attains a value of 1 when
Q=Q,., and then cos6=1 and 0 is zero. For for value of Q less
than its "threshold value", the value of 0 remains at 0.

When one starts up the system from rest, 8 will always be
zero. However, if Q>Q,  and there is any disturbance on the
system, then the system will move up to the stable curve (given by the
equation in part ()). It has to be understood that the graph we have
given is only for the steady state, and that to understand the system
fully, it is necessary to examine the full unsteady-state equation.

c. According to p. 12 of L. D. Landau and E. M. Lifshitz,
Mechanics (Pergamon, 1990) the Lagrangian for this problem is

L=1mI?(6 + Q*sin® ) + mgLcos 0

Then Lagrange's equation of motion

3596 90 0

gives for the system we are considering the following equation of
motion

d26 2 . .
mL? =m€°LsinOcos O —mgsin O
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d. Consider the lower (unstable) branch in the diagram. For
very small perturbations (6,) to the steady state (6,), we have then
sin @ =sin 0; = 0, and cos 0 = 1. Then the equation of motion becomes

d2
dt2 (Qz - %) %

Now we try a small perturbation of the form 6, = A%R{e7} When
we substitute this function into the differential equation we get

w, = +i\|Q* —(g/L). If Q* < g/L, then both roots w, are real and 6,
oscillates. If Q*>g¢/L, o, is positive imaginary and e will
increase indefinitely with time. Hence the branch 8 = 0 is unstable
with respect to infinitestimal disturbances.

e. Next we consider the upper branch for which

cos6, = g/Q?L and sin6, =+1-(g/QL)*. Then the equation of
motion becomes

d291
b

=mQ’L(sin 6, + 6, cos 6, )(cos O, — 6, sin 6,
—mg(sin 6, + 6, cos ;)
~-mQ>L6, sin’ 6,

where we have neglected terms quadratic in 6,. Hence the equation
of motlon becomes

2
Lo o (0 +3/L)(@7 - (2/1)e,

We now try a solution of the form 6; = AR{e™™"} and get

0, =t (@ +g/L)(@* - /L)

For the upper branch, Q> (g/L), and hence both quantities w, are
real. Hence the system is stable to small perturbations.
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5D.1 Derivation of the equations of change for the Reynolds stress

Multiplication of the ith component of Eq. 5.25 by v} and
time-smoothing gives for constant p gives (in the Cartesian tensor
notation of §A.9, with the Einstein summation convention and with
the shorthand notation d, = d/dt):

4 7 ’ ’ ’ s 4 7’ =3 4 7 ! ’ 7

(1) 2) 3 4) () (6)

Then we write the same equation with i and j interchanged. When
the two equations are added we get, term by term:

(1) p(v{&tv]’- + v]’-atv.,-' ) = pd, (v{v; +0v; ) —P(Ufaﬂ’f + vi,atv;)

The second term on the right side is the negative of the left
side. The first term on the right side can also be written as

200, v;v]. Therefore the left side is just pd, v/v].

@  —(vap +vdp)

@ —p(v[3T0] +0]0,5,0]) = ~p(075,9,0] +0]5,3,0; ) (used 5.2-10)
@ -p(vjdv, + V73,073, ) = -p(0/0;9,7; + v7v;d,T; ) (used 5.2-11)
) -p(v[dviv]+0]0,v;v])

4 4 [ 4 4 /=N 4 4
= —p(c?kv,:v;v{ — V0,0,V ) —p(v,-vj(?kvk + vjvk8kv,-)

Note that the third term is zero by Eq. 5.2-11, and that the
second and fourth terms cancel giving —p(akv,’(v]’.v{ )

©)  +u(0/,9,0] +0/3,9,v))

Combining the above gives:



pd, vV} = —(U{é?jp’ + v;éip’) —p(z_)kakv;v{ ) —p(v{v,:akﬁj + v;v;akﬁi)
~p(9070}v] )+ (09 3V] + 1], 9,7

or

pd,vv; +p(z7k(3’kv]’.v{) = —p(v{v,’(aki)‘j + v]fv,’((?kﬁi)—p(o"’kv,:v;v{)

—(v{ P+ v}&ip’) +,u(v{c9k8kv; + v}&kﬁkvi’)

The two terms on the left side are the substantial derivative term in
Eq. 5D.1-1. The remainder of the terms are set out in the same order
as in Eq. 5D.1-1.
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5D.2 Kinetic energy of turbulence
Taking the trace of Eq. 5D.1-1, we get

| p—gt—(v’ V)= —Zp(W:VV) - p(V (v’ v’)v’)

—2(v'-Vp')+2u(v' - V?v’)

Modify the third term on the right as follows:

=2(v’-Vp’)==2(V-pv')+2(p’'(V-V'))

The last term on the right is zero according to Eq. 5.2-11. Then divide
the first equation above by 2 to get

D 5o = -p(7wevw) (v o)
_(V . p’v') + ,UWV_/)

which is Eq. 5D.2-1.
For an interpretation of this equation, see pp. 63 et seq. in the
book by Tennekes and Lumley cited on p. 176.
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6A.1 Pressure drop required for a pipe with fittings.

The average velocity at the given conditions is

(o) = Mw/p) _ (D097 m?fs

D2 - (M mp e

and the Reynolds number is

D
——1(/”—) = (0.25 m(40.1 m/s)/(1.0037 x 10™® m?2/s) = 9.99 x 10°

Thus, the flow is turbulent, and Fig. 6.2-1 gives {=0.0020 for hydraulically smooth
pipe. The total equivalent length of the pipe and fittings is

L, = 1234 m of pipe
+ (4)(32)(0.25) m equivalent for 4 90° elbows
+ (2)(15)(0,25) m equivalent for 2 90° elbows
=1274.5m

The required pressure drop, according to Eq. 6.1-4 with L replaced by L., is then

L.
(Po—pr) =27 p(v)? f
1273.5 m

= 2m(998 kg/m?)(40.1 m/s)?(0.0020)

=3.3 x 10" Pa = 4.7 x 10% psi
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6A.2 Pressure difference required for flow in pipe with elevation change.

In this problem the pipe diameter is (3.068 in.)/(39.37 in./m) = 0.07793 m, the
mass flow rate is

w = (18/60 gal/s)(3.7853 lit/gal)(0.9982 kg/lit) = 1.13 kg/s,
the average velocity is

s (4)(1.13 kg/s)
) = D% = 7{0.07793 m)?(998.2 kgjm®)

= 0.237 m/s,

and the Reynolds number is

_ D(v)p _ (0.07793 m)(0.237 m/s)(998.2 kg/m?)

R
T (1.002 x 10—2 kg/m-s)

=1.84 x 10*

From Fig. 6.2-2 we find that for this Re value, f = 0.0066 for smooth tubes. Hence,
L. )
po — pr = —pg(ho — hr) + 23 ~p(v)°f
= —(998.2 kg/m?)(9.807 m/s2)((—50 x 0.3048/+/2) m)
+ 2[(50 x 12/3.068) + (2 x 15)] - (998.2 kg/m?)(0.237 m/s)?(0.0066)
= 1.055 x 10° Pa + 167 Pa
= 1.055 x 10° Pa = 15.3 psi

The corresponding calculation in terms of lb,,, ft and s, neglecting the small friction
term, 1s

po — pr = (62.4.x 0.9982 Ib,, /ft3)(32.174 ft/s2)((50/V2) ft)
=7.09 x 10* Ib,,,/ft/s? = 15.3 psia



6A.3 Flow rate for a given pressure drop.

The quantities needed for this calculation are as follows, in units of lb,,, ft, and s:

po — pr, = (0.25 Ibf/in?)(144 in?/ft2)(32.174 by, ft /s%-1by)
= 1.16 x 10? b, /ft-s?; _
‘D=05ft; p=6241b,/ft?
L = 1320 ft; p=6.73 x 107* Ib,, /ft-s

Henvce, the solution must lie on the locus

_ Do [(po—p)D
Re\/_f = 5Ly

_(0.5)(62.4) [(1.15 x 10-3)(0.5)
~ 6.73 x 104 2(1320)(62.4)

= (4.64 x 10*)1/3.52 x 10~3 = 2.74 x 10°

Method B: The last equation gives a straight line on the logarithmic plot of f vs. Re,
passing through f = 1 at Re= 2.74 x 10® and through f = 0.01 at Re= 2.74 x 104,
and intersecting the f curve for smooth tubes at Re= 3.6 x 10%. Hence, the average
velocity is

(v) = Re 3.6 x10*
- (Dp/p)  4.64 x 104

and the volume rate of flow is

= 0.78 ft/s

wD?
Q="7-0)

2
_ (3-1413)(0-5 ) (0.78) = 0.152 £6% s

= 68 U.S. gal/hr

4bo crwma - wandld il o




6A.4 Motion of a sphere in a liquid.

The force of gravity on the sphere is
Fgrav = mg = (0.0500 g)(980.665 cm/s?) = 49.05 dynes
The buoyant force of the fluid on the sphere is

Fouoy = (4/ 3)71'R3 P9
= (4/3)7(0.25 cm)*(0.900 g/cm?)(980.665 cm/s?) = 57.77 dynes

a. The resultant upward force is
Fouwoy — Fgrav = 57.77 — 49.03 = 8.74 dynes

and is balanced, at steady state, by an equal and opposite drag force Fy, = 8.74
dynes.

b. The friction factor is defined by

1
Fi = (eB)()p0l)f
Thus, for this system,

_ F _ 8F,
TS EE Ger) Dk
8(8.74 dynes)
~ 7(0.500 cm)2(0.900 g/cm?)(0.500 cm/s)?
= 3.9¢ x 107

c. From Fig. 6.3-1 we see that f is very close to its creeping-flow asymptote,
24/Re. To the same approximation,

Dvop

~ 24/ f = 0.061

Hence,
_ Dvepf (0.5 cm)(0.5 cm/s)(0.9g/cm®)(3.9¢ % 10%)
F="9¢ 7 24
=3.7g/cms = 3.7 x 10 ¢p




6A.5 Sphere diameter for a given terminal velocity.

a. Method A: Replot the f-curve of Fig. 6.3-1 as f/Re (which does not contain
D) vs. Re. Then from this curve we can find the value of Re for any calculated
value of f/Re, and determine D as Reu/pvoo >. '

a. Method B: On the log-log plot of f = f(Re), plot also the locus f =
(f/Re)Re, which will be a line of slope 1, and find the desired Re at the intersection
of the two loci. This method avoids any need to prepare an auxiliary plot.

b. The data of Problem 2A .4 give

Voo = (1 ft/s)(12 x 2.54 cm/ft) = 30.48 cm/s
p = 0.045 Ib,, /£t3)(453.59 g/Ibym)(12 x 2.54 cm/ft)™
=72x10"* g/cm™®
ps =12 g/cm?
p=26x10"*g/cms
g = 980.7 cm/s?

from which we calculate

f/Re:é_gL(p’_p>

3pv3, \ P

4 (980.7)(0.00026) (1.2 — 7.2 x 10~4
T3 120 ( 7.2 % 10—* )
= 27.8

We therefore draw a line of slope 1 through f = 27.8, Re= 1 on Fig. 6.3-1. This line
intersects the f vs. Re curve at Re= 0.95. The particle diameter is then calculated
as

Rep  (0.95)(2.6 x 107%)

D = =
Voop  (30.48)(7.2 x 10—¢)

= (0.0112 cm)(10* microns/cm) = 112 microns

c. Here v is 10 times larger, giving f/Re= 27.8 x 1073, This locus intersects
the f(Re) curve at Re= 75. Hence, at this gas velocity the diameter of the largest
particle that can be lost is

_(75)(2.6 x 1074)

D=
(30.48)(7.2 x 104

= (0.89 ¢cm)(10* microns/cm) = 0.89 x 10* microns
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6A.6 Estimation of void fraction of a packed column.

The superficial velocity is

_ (244 1b/min)(1 min/60 s)(453.59 g/Ib)
™ (1.2865 g/cm®)(146 in?)(2.54 cm/in)?

= 1.522 cm/s

According to Eq. 6.4-9 (the Blake-Kozeny equation, developed for laminar flows),

e 150 Lvg
(1—e?  D24p
150(0.565 g/cm-s)(73 x 2.54 cm)(1.522 cm/s)
- (0.2 cm)2(158 psi)(68947 dynes/cm?-psi)
= 0.0549

Solving this equation for ¢, we find € = 0.30; hence,

Dpvop 1 (0.2 cm)(1.522 cm/s)(1.287 g/cm?) 1
g l—e (0.565 g/cm-s) (1 - 0.30)

= 1.00

which indicates (see Fig. 6.4-2) that it was appropriate to use the Blake-Kozeny
equation here.



6A.7 Estimation of pressure drops in annular flow.

¢. The definition of f in Eq. 6.1-1 gives

Fy _ mR*(1—=K*)(Po —Pr) R —£)(Po—"PrL)

= 2rRL(1 + k)p(9,)2/2  2nRL(1+ k)p(v.)2/2 Lp(v,)?

Equations 6A.7-1 and 3 give

16y
D1 - k)T:)p

Insertion of the previous result for f gives

K

16Lp(v.)* p 8Lu(v)

K= RA— WP —P1) DA REalp B~ rV(Po—Pr)

Equation 2.4-16 gives

(v.)  R? [1——&4_1-—#}
(Po —P1) 8uL |1—k% In(1/k)

Combining the last two results, we get the relation

K

1 1—k? 1— K2
T 1-k2{1-k2 1In(1/k)
needed to make Eqs. 6A.7-1 and 3 consistent with Eq. 2.4-16 for laminar flow. The

K values given by this formula are in excellent agreement with those tabulated on
page 194 and recommended for turbulent flow as well.

b. The data for this operation are

g = 1.139 cp(=mPa-s) = 7.66 x 10™* 1b,, /ft-s; p = 62.2 b, /ft3;
D=15in=125ft; «=6in/15in=04; G = 3.801;

H =0.131; K =0.6759; w/p = 1500 ft3/s;

4(w/p) _4(1600 ft3 /s)

(:) = 57— (xD)] ~ {257 — 052 7] — oo0 M/S
Rev = 12021
(1.25 ft)(1 — 0.4)(388 ft/s)(62.3 1b,,, /ft?)

= 0.6759 = 1.6 x 107

(7.66 x 10—4)

Equation 6A.7-2 then gives:

. _
— = 3.801log,,(1.6 x 10"4/f) — 0.131
\/]—‘ glO( \/—)



Solving by iteration, we get f = 0.00204. The longitudinal pressure gradient in a
horizontal flow is then

(po —p1) _ 2fp(v.)*
L D(1 - k)
_2(0.00204)(62.3 Ib,, /£t*)(388 ft/s)?
B (1.25 ft)(1 — 0.4)

= 5.06 x 10* poundals/ft®> = 10.9 psi/ft

¢. The mean hydraulic radius for this system is

R __S__‘II’DZ(].-—K,z)/‘l—D(l—Ii))
Tz D(1—k) 4

and the correspnding Reynolds number is

_ 4Rw(v:)p _ D( - k)([@:)p
7

Rep, = Re/K = 2.37 x 107

Equation 6.2-15 then gives f = 0.00181, which is 0.885 times the value found in
part (b). The predicted pressure gradient is reduced correspondingly, giving

(po —pr)

7 = 4.48 poundals/ft3 = 9.7 psi/ft



6A.8 Force on a water tower in a gale.

The data for this problem are:

D = 40 ft for spherical tank; Voo = (100 mi/hr)(5280/3600) = 147 ft/s;
p = 0.08 1b,, /ft3; p=0.017 cp = 1.14 x 1075 1b,, /ft-s

The Reynolds number for the tank is

_ Dvoop _ (40 f6)(147 £t/5)(0.08 Ibyn/ft%) _

7
Re m (1.14 x 10-5 1b,,, /ft-s) 4110

The friction factor is approximated as 0.5 by extrapolation of Fig. 6.3-1.

The horizontal force of the wind on the tank is then

T 2
Fi = (") (5%)f

- (f(_‘*%itﬁ) (—;—(0.08 1b,, /£t2)(147 ft/s)2) (0.5)

= 5.4 x 10° poundals = 1.7 x 10* Iby =7.5 % 10* Newtons




6A.9 Flow of gas through a packed column.

For this compressible-flow problem, we write Eq. 6.4-12 in differential form with

= Co/p: 2 2
Ldp_ o hGo(1-e) T G} (1)
dz pD2 &3 4pD, &3
Inserting the ideal gas formula
_ M
P~ RT

and integrating from z = 0 to z = L, we get the following implicit expression for
the superficial mass flux Gy:

pGo(1—¢)* TG;(1—¢) )
[150 Dz & tip, & 2RT(p° i)
The terms are then calculated for this system in cgs units:
pGo (1 —¢)*
150 L
(1.495 x 107* g/cm-s)(Gy g/cm?-s) (1 — 0.41)2
=1 . 4
50 (2.54/16 cm)? ary (08 x 3048 em)
= (753.4Gy) g?/cm*-s?
1G5 (1-¢) s)
4D, &

_1(Go g/cm?-5)% (1 —0.41)
4 (254/16 cm  0.41°
= (15820G2) g? /cm*-s?
—-]V;’—(pg _p)= 44.01 g/g-mol
2RT (8.31451 x 107 x 300 g-cm?/s%-g-mol)
x [(25 x 1.0133 x 10%)% — (3 x 1.0133 x 10°)? g?/cm?-s?]
= (1.116 x 10°) g?/cm*-s*
Combining these results, we get the following quadratic equation for Gy,
15820G3 + 753.4Go = 1.116 x 10°

(5.5 x 30.48 cm)

which has the roots

—753.46 + +/753.46Z + 4(15820)(1.116 x 10°)

Go = 2 % 15820
_ —753.46 + 265746.2

2 x 15820
The positive root is 8.375 g/cm?/s. the mass flow rate is then

w = (7/4)D*Gy = (0.7854)(4 x 2.54 cm)?*(8.375 g/cm? /s = 679 g/s

mm_hg#m['! rom:ls for l\fh;a..ﬂb*’-“ﬂc’. - .f ‘?j‘- P#_*knjrd‘mzé

(po +pL)M/RT.
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6B.1 Effect of error in friction factor calculations
The Blasius formula for the friction factor for turbulent flow
in circular tubes is Eq. 6.2-12:

We now form the differential of f, thus

10.0791 .

¥ =4 re 1K€

and regard the differentials as the errors in the relevant quantities.
This result may be rearranged thus

0.0791 1

1
df =29 1 Re=_f.—~ 4R
f =R areRe=f JRatRe

From this we find

_c_lj_fz 1 dRe

f 4 Re

The quantity df /f represents the fractional error in f, and dRe/Re is
the fractional error in Re.

Therefore, if the Reynolds number is too low by 4%, then the
friction factor will be too high by 1%.

L1



6B.2 Friction factor for flow along a flat plate
a. Equation 4.4-30 gives the kinetic force acting on both sides
of the flat plate for laminar flow:

F, =1.328+/pul W?v?

and an appropriate Reynolds number for a plate of length L is

Ly p
U

Re;

Then, using the definition of the friction factor in Eq. 6.1-1, we write

fe F, 1328\pulW?? 1308 | #1328
AK 2WL-1pv2 ‘ Luo.p +Re,

b. For turbulent flow, the force acting on the plate is given by
Eq. 6B.2-1 as

F, =0.074p0*WL(Lv.p/u) ™"
Then the friction factor is

fo B 0.074pv2WL(Lo.o/u) ™ 0.074
AK 2WL-1p0? Re}®

Here we have used the same definition of Reynolds number as in
part (4).

(12



6B.3 Friction factor for lami@fr/lar flow in a slit
a. The mass flow rate through a slit of width W, thickness 2B,
and length L is, for laminar flow

wzg(?o ~®,)B"Wp =p
3  uL

and the kinetic force acting on the walls by the fluid is
F=(® - ®.)(2BW)
Then the friction factor is

fe F, ___(’tPO—’d",_)(ZBW)
AK - (2WL)($p(o.)’)

We now replace one of the (v, ) in the denominator of this expression
by using the above expression for the mass flow rate. This gives

_(Pe-P.)(2BW)  3uL 12 12

g (2WL)30(v.)) (Po-PL)B” 2B{v.)p/u Re

b Next we try using the mean hydraulic radius empiricism
suggested on p. 183. For the plane slit, R, is

S 2BW

R,===—"""_=B
Z 2W+4B

In the last step we have made the assumption (consistent with the
derivation of the velocity profile for the slit) that B<<W. We now
replace the D in the tube flow friction factor by 4R,. Then

fo_ 16 16 16 __8 _8
D{v.)o/u ~ 4R,(v.)o/u 4B(v.)o/u 2B(v.)p/u Re

This poor result emphasizes the statement made just after Eq. 6.2-18.



6B.4 Friction factor for a rotating disk
a. Laminar flow

£ T, 0. 6167pR*\[uQ? /p _0.616
AKR (2nR2)(2p92R2 stzp Re'?
b. Turbulent flow
T, 0.073pQ7R®(u/R?Qp)" u Y 0073
f=—2 073 —=—| =w37
AKR (27;1{2)(5;)@21{2)1( ‘R%Qp Re
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6B.5 Turbulent flow in horizontal pipes.

a. Equations 6.1-4 and 6.2-12 give, for horizontal flow in smooth pipe with
fixed w, p, t, and L,

(o~ p1) = 25 p(0) - f

L 4w |, 4w \ M2
= 22 (N (00190) ( 1)

x D—5+1/4

According to this formula, the replacement of the smooth pipe of diameter D
by a smooth one of diameter D/2, with all other right-hand variables unchanged,
will alter (po — pz) by a factor of (1/2)7%+1/4 ~ 27.

b. If the Blasius expression for F' is not appropriate (e.g., because the range of
Re is higher or non-smooth pipes are used), then one must calculate Re= 4w /7w Du
for the present operation, read fyq from Fig. 6.2-2 at that Re with the applicable
roughness measure k/D, and then read fpew at the new values of 4w/mDy and
k/D. Then the calculation in (a) needs to be modified only by using fnew/fola in
place of (Dypew/ Dold)l/ 4. The inverse 5th-power of D will still be dominant in the
calculation of the change in (po — pr)-
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6B.6 Inadequacy of mean hydraulic radius for laminar flow
a. The mean hydraulic radius for the annulus is (Eq. 6.2-16)

_S _ 7R - z(kR)* R(l—Kz)-E(l—K)
" Z 2aR+2m(xR)  2(1+k) 2

Then, according to Eq. 6.2-18, the Reynolds number is

Re, = 4Rh<vz >p _ 2R(1_ K)<vz )p
e, = =
u u

Then, according to Eq. 6.2-17 the friction factor is

(R Po-P.|_ 16 _  4pu
f_(L)i%p(vz)z) Re, Ry(v.)p

or

Po-PL)R; (P, -P,)R*(1-k)°
2ul 8uL

AR

This is the mean-hydraulic-radius analog of Eq. 2.4-16.
b. When k=1, the above result for the mean-hydraulic-
radius empiricism gives:

(P - P, )R?
8uL

(vz)z

(0.250)

whereas Eq. 2.4-16 (the exact result) gives

<vz>=<ﬂ°o~ﬂ°L)R2[1-K4 1}

C8uL [1-x* W(Vx)
=(3°o—°°L)R2{1—(%)4 1-(%)2}
8ulL 1_(%)2 In2
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suL | (%) 0.6931
(Po-®L)R’[ 0.750 }

suL | 0.6931
(®, - P, )R?

SuL
(P, -®.)R?

= (0.1679)
8uL

_ (300 "‘PL)RZ _(%_6_) _ (%) }

[1.25-1.0821]

The percentage error in the mean-hydraulic-radius empiricism is
then

0.2500-0.1679 o _0.0821 . 0 o0
0.1679 79

This confirms the inadequacy of the mean-hydraulic-radius
empiricism for laminar flow.
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6B.7 Falling sphere in Newton’s drag-law region.

Let z be the (downward) displacement of the sphere from its initial position, and

v = v, = dz/dt denote the instantaneous velocity of the sphere. Then the z-
component of Newton’s second law gives, for a falling sphere of mass m,
dv
Z_F
it
in which

Fz =mg, — sz
= mg — (nR?)(= pv?)(0.44)

= mg(1 — c*v?)
with ¢? defined by the last equation. Hence,
d
;l-lti = g(1 - ¢*v?)

and integration from the initial condition v = 0 at ¢t = 0 gives

v dv t
—_— = dt
/0 1— c2v? g[,

or

1
—tanh™ cv = gt
c
whence
dz 1 tanh cot
— = v = —tanhc
dt c g

Note that as ¢ — oo, tanh cgt — 1. Hence, the “terminal velocity” is 1/c. A second
integration then gives (for z = 0 at ¢t = 0):

z 1 t
/ dz = —/ tanh cgtdt
0 ¢ Jo

1 cgt

z=—= tanh Adg
0

= g

or

1
= ——Incoshcgt
cg

Now mgc? = 0.227R?p, so that '
¢ = +/0.221R2p/mg

[ 0.227R?p

%WRzPSPhg
_ PV (L
- \/(4) (0-22) (Psph) (Rg>

Note that this solution assumes that the particle is in the Newton’s drag law region
during its entire trajectory. However, the initial condition that v = 0 at ¢ =0 is
clearly outside the Newton’s drag law region.

(-1}



6B.8 Design of an experiment to verify the f vs Re chart for spheres
a. We start with the friction-factor expression in Eq. 6.1-7.
Since we need to have a D expression containing the Reynolds
number (but not the terminal velocity), we eliminate the velocity in
favor of Re. This gives |

f=égD psph_p =i]:_gD Dp 2 psph._p =é gD3
302 p 3Re?\ u 0

We now solve this expression for D to get

D _ _3. fReZ'uZ
4(pn - )8

b. Next, substituting numerical values into the formula, we
get

=0.048 cm

. d 3 (1)(100)*(1072)°
V4 (8-1)(1)(980.7)

- 6-1\9



6B.9 Friction factor for flow past an infinite cylinder
We select the area A of Eq. 6.1-1 to be the area "seen" by the

approaching fluid, which is DL, and K to be 1pv2. Then combining
Egs. 6.1-1 and 6B.9-1 gives

4ruv L

P = JAK = 17 4/Re)

We now solve for f and insert the expressions for A and K to get

f= 4ruv, L 1 _ 8= 1

~ In(7.4/Re) (DL)(3pv2) In(7.4/Re) (Do.po/u)
Therefore
f 8

" Reln(7.4/Re)
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6C.1 Two-dimensional particle directories
a. We start with Newton's law of motion for a particle

—mv M F

which states that the rate of change of momentum of the particle is
equal to the sum of the various forces acting on the particle. In this
instance, the forces are those associated with friction and those
related to gravity. Specifically, since m is a constant, we may write

(7R ) v =~ (R 302 25 1)

+(§— R Py, — 3 ARP,, ) 88,
Here the positive direction for the y axis has been taken to be in the

direction of gravity (i.e., "downward"). The frictional force has been
taken from Egs. 6.1-5 and 5a, and the gravitational force from Eq.

6.1-6. Dividing v by its absolute value [v|=+/v2 +v2 gives the vector

n of Eq. 6.1-5a. When the above equation is d1V1ded by the mass of the
sphere, we get

3 P [7a2 p
V=2 y? +v, fvH 1- ar_ 198
" BR oy ( )g

Y sph

Next we take the x and y components of this equation to get:
dvx 3 Pair 2 2
=— v 1/0 +v
dt 8Rpgy, “'V*' 7 f
dv 3 p o2 P
y _ _ air '0 v+ F+ air
dt 8R Pypn ( )

in which it is understood that f is a function of the Reynolds number
based on the instantaneous velocity: Re = 2R|v|o,;. /K. -
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6D.1 Friction factor for a bubble in a clean liquid

The rate of energy dissipation in any region is, for a
Newtonian fluid with negligible dilatational viscosity

E, =[] (—'t\:Vv)dV = uf[[(Vv+(Vv) ):vvdv
=1{]f (VV +(vv)' ):(Vv +(Vv)' )dV

For potential flow, [Vxv]=0 or Vv =(Vv)', and hence

E, = 2u[[f(vv:(v) )av = 2uf[[(V-[v-(v)' |V 2u[ff(v - v2v)av
But for irrotational flow of an incompressible fluid
(V*v)=V(V-v)-[Vx[Vxv]]=0

Then using the Gauss divergence theorem on the remaining term

E, = Zuﬂ (n - [v - (Vv)+])dS = ,u”(n -Vo? )dS

=-p [ Q—U;Rz sin 646d¢

surface at R

The surface integral includes the spherical surface at » = R at which
n=-96, and the surface at 7= atwhich n=3,.

For the potential flow around the sphere, we get from Egs.
4B.5-2 and 3

From this we find

2
92| =-2%=gn29
or |_r 2 R




- Then, when this is substituted into the expression for E,, we get

2
E,=-2mu -(—%%)Rz [, sin® 646 = 12 muRv? = Fyo,,

Hence, from F, = (n'R2 )(% pv2 ) f we conclude that

_ RmuRv, 48 48
- (nRz)(%pvi) ~ 2Ruv_p/u  Re

24



7A.1 Pressure rise in a sudden enlargement.

According to Eq. 7.6-4
= o2 _1_ 1) in which 8 = 51
P2 — D1 = pu3 5 in which g = £

We compute 8 and vy thus:

S (D' (5\ _
ﬂ—g;—(J—);) —(9) = 0.309

Q  (450/60 gal/s)(0.13368 ft®/gal)
Vp = 5 =

S, ((/4)(25/144) £t2)

2 1
P2 — P1 = pv; B—l

= (63 lby /£t2)(7.35 ft/s)? (6—?}65 — 1)

= 7610 poundals/ft?) = 1.64 psi

=17.35 ft/s

Hence,



7A.2 Pumping a hydrochloric acid solution.

Equation 7.5-10 reduces to

—— — L .
W, = P27 P + L2 f (pipe friction) + iv% (exit loss)
P 2 Ry 2

for the liquid between free surface “1” and free surface “2”, when the liquid is
regarded as incompressible and the negligibility of kinetic and potential energy
differences between those locations is noted. The major right-hand term is

p2—p1 _ (4—1 atm)(6.8087 x 10* b, /ft- s2/atm)

= 3273 ft? /52,
o 62.4 1by /Tt? /s
the pipe friction term (with f = 0.0048, from Eq. 6.2-12) is

o L

. 300 ft
2 DJ/4

1 2
= —(2. ——(0.004
~(2.30 ft/s) 05/ ft)(0 0048,

) = 92 ft?/s?,

and the exit loss is .
-(2.30 ft/s)* = 2.6 ft2 /s
2

Thus, the required work input per unit mass of fluid pumped is
W = 3273 + 92 + 2.6 = 3368 ft2 /s

Multiplication by the mass flow rate of

2
w = (rR)p(v) = (”)(‘1%1_4 £62)(62.4 by /£67)(2.308t/5) = 12.5 b /s
gives the power required from the pump:

W = Ww = (3368 £t2/52)(12.5 lb,,, /5)
= (4.22 x 10* ft poundals/s) x (3600 s/hr)(1.5698 x 10~® hp-hr/ft poundal)
=24 hp=18kw



7A.3 Compressible gas flow in a cylindrical pipe.

For steady isothermal, horizontal pipe flow of an ideal gas at T' = 25°C=536.7 R
- with flat velocity profiles and W,, = 0, Eq. 7.4-7 gives

Calculation of the terms in ft2/s? gives

RT  p1 _ (4.9686 x 10* Ibnft? /s> 1b-mol-R)(536.7 R) s
RT, » _ . t
i " g, (28.01 b, /Tb-mol) In2 =6.60 x 10° ft*/s

and with p = pM/RT in corresponding units,
p1 = (2 % 2116.2 1b#/£t2)(28.01 Ib,, /Ib-mol)/(1544.3 £t-1b s /Ib-mol-R)(536.7 R)
= 0.1430 1b, /£t3 = 2p,

Then

HONCER)
=- (g%‘?%—b}ntz/?) ((0.1430 11bm/ft3)2 - (00715 llbm/ fts)z)

= —2.39 x 10® ft?/s?

Combining these results, we get

E, =6.60 x 10° — 2.39 x 10% = 6.58 x 10° ft2/s2
With the aid of Table F.3-3 we get the corresponding values in other units:

E, = 26.3 Btu/lb,,, = 6.11 x 10* J/kg



7A.4 Incompressible flow in an annulus.
(i) The mean hydraulic radius is (see Eq. 6.2-16):

§_mR—-RH _1

Rn=2= -
"~ Z 2R, +R) 2

(Ro - Ri)

The mass flow rate is
w = (241/60 U.S. gal/s)(231/1728 ft*/gal)(62.4 1b,, /ft?) = 33.5 1b,, /s

and the average flow velocity is

)= & = __wle
pS (R - R})

_ (33.5 by /s)/(62.4 1by, /1t

— w((7/12)2 - (3/12)2 ft2

3)) = 0.615 ft/s

(ii) The Reynolds number is (see Eq. 6.2-18):

_ 4Ry (v)p _ 2(Ro — Ri)w _ 2w

" p (B -RHu (R, +Rop
B 2(33.5 1b,, /s)

— w((7+ 3)/12 ft)(1.14 x 0.000672 1b,y, /ft-s)

= 3.34 x 10*

Re

Hence, the flow 1s turbulent and f = 0.0059 according to either Eq. 6.2-15 or Fig.
6.2-2.

(iii) From Eq. 7.5-10 we calculate the work required W in ft-poundals per
pound [=] ft%/s%:

- 1, ., L

L

= g(hz — h1) + (v)sz

= (32.2 ft/s?)(5 ft) + (0.615 ft/s)2 ((_7_30?)3715) (0.0059)

= (161 + 0.175) = 161.1 ft2/s?

The power output required from the pump is then

wW = (33.5 Ib,,,/s)(161.1 ft2 /s? = 5.4 x 10 ft-poundals/s
= 1.9 x 10" ft-poundals/hr = 0.31 hp = 0.23 kw



7A.5 Force on a U-bend.

According to Eq. 7.2-3, if the z-axis is taken in the direction of the downstream
unit vector u; at Sy, which is the negative of the downstream unit vector uy at S;
and perpendicular to the gravity vector g, then the force exerted by the water on
the U-bend has the z-component

(52 L4 Ff——»s) = (’Ul'w +P151) (61: L4 ul) - (va +P252) (62 L4 u2) + mtot(az ® g)

when the velocity profiles at Planes 1 and 2 are approximated as flat. With (6, e
) =1, (6 0uy) =—-1,(6,09)=0,S5; =52, and v; = v, = w/p = Q/S, this
gives
F:z:,f—>3 = (UI + ’U2)’w + (pl +P2)S
= (2Q/5)(Qp) + (p1 +p2)S
=2Q°p/S + (pr +p2)S

with Q = 3 ft3/s. Thus, the horizontal force of the water on the U-bend is
Fp s = 2(3 £t3 /5)%(62.4 by, /£t3) /(47 /144 ft2)

+ (21 4 19 1by/in?)(4r in?)(32.174 lb,ft/s2-1b)
= (12871 + 16172 Ib,ft/s?) = 29043 lb,,ft/s? = 903 lb;
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7A.6 Flow-rate calculation.

As our system for the mechanical energy balance, we consider the water between
plane 1 (the upper liquid surface in the constant-head tank) and plane 2 (just inside
the outlet of the exit piping). We neglect the velocity at plane 1, set p = paim at
planes 1 and 2, and treat the water as incompressible. Then Equation 7.5-10 takes

the form 1 1L !
‘2‘1’% +9(z2 —2z1) = —§U2§;f - 502 Z €vi

in which the kinetic energy and friction terms all are calculated with the same
- average velocity v.

Collecting the coefficients of v%, we get
9 L
v |1+ E—f+0.45+0.4+0.4 = 2g(z1 — 22)
h

in which the coeflicients 0.45, 0.4, and 0.4 are the e,; values for the sudden contrac-
tion at the pipe inlet and for two smooth 90° elbows. There is no enlargement loss
in the system considered, since plane 2 is just inside the exit of the piping. Setting
Ry = D/4 and solving for v, we get

Y = 2g(z1 — #2)
2.25+4+4fL/D
This result is explicit except for the friction factor f, which depends on Re and thus
on v.

Multiplying the last equation by v/v and evaluating all the dimensional con-
stants in cgs, we get the working formula

Re — Dv D [ 29(z1 — 22)
v v \[22544L/Df

_ 12.7 cm 2(980.7 cm/s?)(38 x 30.48 cm)
~0.010037 cm?/s 2.25 + 355.2f

1.907 x 10°
- (4)
v2.25 + 355.2f |

The last equation is solvable rapidly by iteration. A first trial value 1x105 for
Re gives f = 0.0045 from Fig. 6.2.2, and a new value Re= 9.72 x 10° from Eq. (A).
At this new trial Re value, we get F' = 0.00285 from Fig. 6.2-2, and Eq. (A) then
gives Re= 1.056 x 106. Returning to Fig. 6.2-2 with this new trial Re value, we get

f =0.0028, and Eq. (A) then gives the value Re= 1.059 x 108, which we accept as
final. ‘



- The mass flow rate can then be calculated as w = RewrDpu/4, or the volume
flow rate as

w  RerDp
Q= >~ 1
(1.056 x 10°)(7)(12.7 cm)(0.010037 cm?/s

1 =1.1x10° cm?®/s = 0.11 m3/s

Calibration is necessary to get accurate measurements of flow rates in such an
apparatus, because of the uncertainties in the geometric details and thus in the
energy loss factors (see Table 7.5-1).



7A.7 Evaluation of various velocity averages from Pitot tube data.
1.05

-—]

S R e g
=
|
—
B

—_B
0.9 == 2\

—~
0.8 = \\ 5
0.7 : \
1
\
0.6
= 0.5 \
Uz max ' \
0.4 \
0.3 : \
0.2

0.1

0 6r 02 03 04 05 06 07 08 09 10
u=r/R

This figure shows velocity data from the C. E. thesis of B. Bird (University of
Wisconsin, 1915). Each measurement is labelled with its position number from the
table in Problem 7A.7. The flow is evidently turbulent, but not fully developed; if it
were, the measured velocities at positions 1, 2, and 3 would show better agreement
with those at positions 7, 8, and 9 for the same r values. The solid curve in the
figure is a curve-fit of the data, and the dashed curve represents the 1/7th-power
model given in Eq. 5.1-4, which is based on extensive experiments in fully developed
flow.



A Application of Simpson’s rule to 11 uniformly sﬁaced points on the solid curve
gives the following velocity averages. A finer grid would give more accurate approx-
mations to the integrals.

(v) :/01 ° 2udu

Umax Umax

=[(1 x 1.0 x 0) + (4 x 0.995 x 0.1) + (2 x 0.986 x 0.2)

+ (4 % 0.98 x 0.3) + (2 x 0.975 x 0.4) + (4 x 0.96 X 0.5)
4+ (2 % 0.94 x 0.6) + (4 x 0.92 x 0.7) + (2 x 0.87 x 0.8)

+ (4 x 0.755 x 0.9) + (1 x 0 x 1.0)] x 2/30

= 0.832
2 1 2

= [(1 x 1.0% x 0) + (4 x 0.995% x 0.1) + (2 x 0.986% x 0.2)
+ (4 x 0.98% x 0.3) + (2 x 0.975% x 0.4) + (4 x 0.96% x 0.5)
+ (2 x 0.94% x 0.6) + (4 x 0.92% x 0.7) + (2 x 0.87% x 0.8)
+ (4 x 0.755% x 0.9) + (1 x 0% x 1.0)] x 2/30
= 0.749

(:3) = /1 ::3 2udu

Umax 0 Umax

= [(1 x 1.0* x 0) + (4 x 0.995% x 0.1) + (2 x 0.986° x 0.2)
+ (4 x 0.98% x 0.3) + (2 x 0.975° x 0.4) + (4 x 0.96* x 0.5)
+ (2 x 0.94% x 0.6) + (4 x 0.92% x 0.7) 4 (2 x 0.87° x 0.8)

+ (4 x 0.755% x 0.9) + (1 x 0* x 1.0)] x 2/30
= 0.680

These integrals give the ratios (v?)/(v)? = 1.08.and (v3)/(v)® = 1.18. As one
might expect from inspection of the plotted curves, these ratios differ significantly
from the values 1.02 and 1.06 calculated for a 1/7th-power velocity profile.



7B.1 Velocity averages from the 1-power law
a. Average of the velocity

@) Jo [ [1~(r/R)]"” rarde
- 27 R '
Umax J.O J-O rdrd@
=2fix{1-27)(7x Jar=14(k- ) =

=2[)(1- &) eag

b. Average of the square of the velocity

(08) LTG0 (/R rardo_ g

vrznax Ioz ”J.;{ rdrd@ 0
=2 x{L- 273" =7(3-4) =
so that (a2)/(2.)" = (%)(9)" =3

c. Average of the cube of the velocity

(52) PR virdo_

vr?;ax IOZ i '[: rdrd6

=2fp3(1- 7)) = (- )= 8

sothat (2. = ()(8)’ - 489
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7B.2 Relation between force and viscous loss for flow in conduits of
variable cross section

For the variable cross-section, the macroscopic balances in
Egs. 7.5-5 and 6 have to be restated (when the gravitational forces
can be neglected) thus:

(z-momentum) Fro = (01— 0,)w+(p:S; - p,5,)

(mechanical energy) EU = %(012 -0} ) + %(Pl ~p2)

To prdve that Eq. 7B.2-1 is correct, we multiply the second equation
above by pS,, (defined in the problem statement) to get

pS,E, =1pS, (0} -v3)+S,(p —p.)
=30S,,(v1 =0, (01 +0,) + S, (1~ P2)
If Eq. 7B.2-1 is to be correct, then in the term containing the

velocities, we must have w=1pS,,(v; +v,). That this is indeed true
can be seen as follows:

1 w o w 5,5, w) 1 1Y) 55 )
25 (01 +02) PSy PS; NS5 +5, PANS S \5+5,

Next, we have to verify that (p,S; =p,5,)=S,(P1 = P2) +Pu(51 = S,)-
Substituting the definitions of S,, and p,, gives for the right side:

25,5, _ P1S1 + P25, _
(B35BT e

_ 25:5:P1 = 25,5,p, + Sip1 = S3P2 = $1S:P1 +5:5:P,
S, +S,
_ P15 (51 + Sz) = P25,(S; + Sz)
S5, +S,

= P15 — P25,

(Ref: R. B. Bird, CEP Symposium Ser. #58, Vol. 61 (1965), pp. 14-15.
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7B.3 Flow through a sudden enlargement

The pressure rise is given by Eq. 7.6-5, and, in Eq. 7.6-6, in
terms of the downstream velocity. We need a similar expression
written in terms of the upstream velocity:

P2~ ﬂvl [vl ﬁvl ] pvlﬁ(l B)
Then, to get the extremum, we set the first derivative equal to zero:
d\p,—p

eobi)_ pur(a-29)=0

Hence, we get

2
S, _D}_1 o D;_ 5

- B==L
P S, DI 2 D,

We still have to verify that this is a maximum for the velocity. To do
that, we need the second derivative:

d*(pa-p
———%—12: 2007 <0

Since this is negative, we have found the location of the maximum.
The maximum pressure difference is then

P2 —P1=P0; B(l B ) Pvlz

-1



7B.4 Flow between two tanks

The flow in a tube can be described by the steady-state
macroscopic energy balance of Eq 7.4-7, which for this problem
simplifies to

pB—pAZ_Ev or pA—pB:pEv
o
Then using Eqgs. 7.5-8, 6.2-16, and 6.2-12 we get

pa=pa=0(e) g f = 10(e?) T f = 10(e*) T o

(Note that we could just as well have started with Egs. 6.1-4 and 6.2~
12.) The last equation can now be written for each of the two
systems, and we omit the factors involving numerical constants, tube
length, and the physical properties (since they are the same for the
two systems):

2 ~y/4 2 V4
(PA _ PB) ol @u | 1 [ Dywy o | Yn 1 | wy
" Sy ) Dy Sy Su Sy \ Sn
-1/4
( Wy )2 1 | 3w
S 75 V2 S

In the last step, we have used S =15, and wy =1 w;. Hence

2

-1/4
A FB/1 2
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7B.5 Revised design of an air duct

a. The flow in a tube can be described by the steady-state
macroscopic energy balance of Eq. 7.4-7, which for this problem
simplifies to

p_Z:'_P_l_ = _Ev. or Pi—P2= pfsv

Then using Egs. 7.5-8, 6.2-16, and 6.2-12 we get

4L 0.0791

P1— P2 :%P<UZ>£f:%P<Uz>é‘lif:%p< > D Re¥*

(Note that we could also have started with Egs. 6.1-4 and 6.2-12.)
b. Label the two systems-—-the original and the revised--I and
I1. Then the pressure drop in the two systems will be

0.0791 10(v*) L
(4Rh,l<v>1p/'u)l/4 R

(Pl —P2 )1 =

0.0791  1p(v*) L
(4 R u(v)ypo/1 )1/4 Ryn

(pl ~ P2 )n =

Since the numerical constant, the length L, and the values of the
physical constants are exactly the same, we now omit those
quantities from consideration and concentrate on the quantities that
are different. Then we have (with W and H being used for the width
and height of the ducts):

(0)7/4 (w/SI)7/4 z* [ZW +H1)]5/4
TR () S WHT

@ (worsa)™ _z3* 20+ Ho)]™
Ri/ﬁ (11/211)5/4 5131 [WHHH"]3

(pl P2 )n

T-14



We have used the fact that w is the same in both systems. Next we
make use of the the fact that the pressure drop is the same in both
systems:

5/4 5/4

[2(w, +H, )] _ [2(Wy + Hy)]
[W.H, ]3 [WyHy ]3

¢. Next we put in numerical values

[2(4+ )" [2Wy +2)]"

[4 ’ 4]3 [ZWH ]3

Taking the fourth power of both sides gives

[16]5 _ [Z(Wn +2)]5
(16" [2w,]”

Thus the equation for 2W,; = x becomes

1 (x+4)
167 = x12

This equation can be solved by trial and error, and the solution is x =
18.4 ftor W;; =9.2 ft.
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P2 =P =p(0 )2 (ﬁng) - ﬂngz) )

c. Finally we apply the steady-state mechanical energy
balance (Eq. 7.4-7) for incompressible fluids to get

£ _1(@3) <03>)+P1—P2

0—2 - 0

(v1) (v2)

The pressure difference is evaluated from part (b), so that we get

p 1,2 (vf>_<v§’> <02>ZJ_ o \2( K@ _ g2K @
£, | - L )t g

1, \2.3 , K§) 2( n1(2) _ p27(2)
=§<Ul> K; Kl—ﬂ %8 —(v1) (ﬂKl -B°K3 )
1

_1l v K® oo K& K
_§<Ul> Kl K1'—2[31—<-§§+ﬁ 2—@—_@

For turbulent flow, the ratios of the K,m in these expressions are of
the order of unity.
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7B.7 Inventory variations in a gas reservoir
a. The maximum, minimum, and average values of w, are

(w,)_, =A+B (w,) . =A-B

th 0(A + Bcos a)t)d(a)t)

(@)

b. A mass balance over a 24-hour period is obtained by
integrating the unsteady mass balance over the 24-hour period:

[ 024(61—73%)& =[P wdt [ w,dt

(w, )avg

If the amount of gas in the reservoir is to have the same average
value over a 24-hour period, then

0=24w, -24A
~ from which w, = A.

¢. The total mass of gas in the reservoir as a function of time
can be found by integrating the unsteady macroscopic mass balance:

jo(d’;’m )dt = [“wydi - [0,

to get
M, () =md, + j; (A-A-Bcoswf)df=my, - g—sin wt

d. In this problem we are assuming that the density of the
fluid does not appreciably change with time, and so we assume that
it is constant. However, the volume of the gas. V(t), w1ll be a
function of time and m,(t) = pV(t) so that

1-18



pV(t)=md, - -gsin ot

The criterion for uninterrupted operation of the system is that V(t)
must never go below zero. In this limiting situation, the quantity
m,, (t) =pV(t) must then oscillate between the minimum value,

my, —(B/w) ,and the maximum value, m_, +(B/w). Therefore, the

minimum total mass in the system that can accommodate this kind of
oscillation is that

OV pin =[S, + (B/0)] - [mL, - (Blw)]
or

_ 2B (2)(2000)

=L = =3.48x10° ft°
™ pw  (0.044)(27/24)

3. Add a three-day supply to the amount found above

2B

Vinin = = +(3x24A)=(3.48 x 10° )+(—72)(L'OQ-2
pw |

(0.044)
= (3.48><105 )+(8.18>< 106)= 8.53 x 10° ft3
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7B.8 Change in liquid height with time

a. We want to calculate the volume between the liquid level
at h and the part of the sphere below the liquid level. The sphere is
visualized as being generated by a circle in the xz plane, with its
bottom at the origin and its center at x = 0, z = R. Such a circle has
the equation

x* +(z~-R)* = R?
or
x? =2Rz - z?

Next we visualize the liquid volume as being made up of thin circular
disks of thickness dz, each disk with a volume

dV = nx*dz = n(2Rz - 2* )dz
Then the total volume of the liquid is

V= nf: (2Rz - 22 )dz
= n(Re" -42°))

= n(RR? - 11°)
or
V= nha(l—ﬂ’-)
3R

This may be checked by verifying that when the tank is full, h=2R,

and the liquid volume is V =4 7R’ that when the tank is half full,
h=R, and the liquid volume is V =2 7R?; and that when the tank is
empty, h =0, the liquid volumeis V=0

(Note: This method of obtaining the liquid vplume was suggested by
Professsor L. E. Wedgewood, University of Illinois at Chicago)



b. To get the liquid height as a function of the time, we start
with the differential equation in Eq. 7.1-7 which may be rearranged

to give:

(H_Z(L+R)+L(2R+L))dH _ 4
H dt

- This separable, first-order equation can be integrated to give
1H?-2(L+R)H+L(2R+L)InH = At+C
Att=0,h=2R,and H = 2R + L. Therefore
1(2R+L)* -2(L+R)(2R+L)+ L(2R +L)In(2R+L)=C
Subtraction and elimination of the integration constant then gives

1 [H2 - (2R + L)Z]- 2(L + R)H-(2R+L)]+L(2R+L)In ZRIi - = At

2

or
3 (h+L)? (2R +L)*|-2(L+ R)(: - 2R)+ L(2R +L)In 2};{ ++LL = At

When k = 2R, this equation gives ¢t = 0, and when h = 0, it gives
t =t qu exactly as in Eq. 7.1-8. We now introduce dimensionless

variables: 7n=h/2R (dimensionless liquid height) and A =L/2R
(dimensionless tube length). Then the above equation becomes:

—%—[(n+/1)2 ——(1+/1)2]—(2/1 +1)(n-1)+A(1+A)ln '17:;} = 4’;1:2

c. The parameter A =L/2R is fixed by the geometry of the
system. Choose values of 1=h/2R from 0 to 1 and calculate ¢. from

the above equation. These may be plotted to give the curve of the
dimensionless liquid height versus the dimensionless time.
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7B.9 Draining of a cylindrical tank with exit pipe
a. First we write the unsteady-state mass balance for the

tank. The mass of fluid in the tank at any time is 7zR*hp, and hence
the mass balance is (since there is no inflow stream)

d 2
2 2R?*hp = —
it P =-w,

The quantity w, is the mass rate of flow out of the tank, and this is
equal to the mass rate of flow in the tube. The latter is given by the
Hagen-Poiseuille formula:

o = n(®, —®, )D*p _ n(pgh + pgL)D*p
2 128uL 128uL

Here pgh is the pressure p, exerted by the fluid above the tube
entrance, and pgL is the "pgh-term" in the expression for ® in fn. 1
on p. 50 and discussed after Eq. 3.5-7 on p. 84. (It is unfortunate that
we are dealing with two h's here: the & in the expression for ® and
the h which is the height of the fluid in the cylindrical tank; th8’ must
not be confused with each other.)

The mass balance is then

dt 128uL dt 128 uLR?

R dh __mpg(h+L)D’p op Hn__s(h+ L)D*p

This first-order, separable equation can be integrated thus:

4 2
LI ".[ e _PED_ Zdt or  tyg, = —128MLF ln(l ¥ E)
JHp+LT % 128uLR pgD L

b. One has many mass-flow-rate vs. pressure-difference
relations to choose from in turbulent flow. For purposes of
illustration we use Eq. 5.1-6, which can be shown to be identical to
the Blasius formula given in Eq. 6.2-12. Thus we replace the second
equation in part (a) by
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47 s \Y7
n( pRYA 47 7 pR 4/7
w="[ PR\ _p\_F[_PRT _ h+l
2 ( 0108a7L) Po~®u)" =5 Gogprir) [es(h+L)]

Then the mass balance becomes

dn_ 1 p"R%* ¥
Ef‘a(a‘%gm (r+ 1) =-B(h+ L)

This equation can be integrated to give
Z(h+L)Y =-Bt+C

Application of the initial condition gives
Z(H+L)Y =C

Subtraction then gives the expression for the instantaneous liquid
level

3| (H + Ly - (h+ L) | = Bt
The efflux time is then
Z?;[(H + L)3/7 - L3/7] = Btefﬂux

or

47
_14(0.198u"L 37 137
efflux = —3’( VAR ) [(H +L)" -L ]
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7B.10 Efflux time for draining a conical tank
a. From the unsteady mass balance we get, for the truncated
cone system with no input stream

d

Egmtot =-w, or i(%m‘zzp—%m‘gzz) = _pvz(ﬂr%)

dt

From Fig. 7B.10 we see that r/r, = z/z, so that the mass balance may
be rewritten as

bl )=o) or E(12)=-uz

Therefore we get

z? dz _ v,Z> or © 2 dz
—_— - 5 = e ———
a7 2 2 dt

b. We simplify the unsteady mechanical energy balance by (i)
omitting the kinetic energy contribution on the left side, because it
was shown in Example 7.7-1 to be unimportant, (ii) neglecting the
viscous dissipation term E, because it is believed to be small, (iii)
assuming incompressibility (which causes the E, term to drop out,
(iv) omitting the work term, since there are no moving parts, (v)
omitting the pressure terms on the right side, since the pressure is
atmospheric at both ends, and (vi) assuming no vortex motion of te
fluid. All potential energies are with respect to z = 0 as the datum
plane. Hence we get:

d

E(Dtot% "(% v; + 82 )wz

First we get the total potential energy in the fluid. This is done by
integrating pgz over the volume (regarded as a truncated cone):

Dy = [pDdV = [pgzdV = pgf:2 Z-nridz

V) V()
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2 2 2
z _ Z _3 4 | r
=pg zzz-/z(z2 ) dz = Pgn[ 2) fzzza’dz:p—i—(—z—i—) (z* - 2z3)

Then the unsteady mechanical energy balance becomes

2
255(5)' (- 2t) 3ot s g o

2
pgﬂ(_-zr—z-) z° % =-(403 + g2, )(pv,mr3 )

Then, using the result of the mass balance to eliminate the time
derivatve, we get

2 2
r z
pgn(-f} 23(—2—%] = (193 + g2, ) (v, 7r3)
2
After dividing through by — pzirjv, we get Torricelli's law:

gz=34vi+gz, or v,=+2g(z-2z,)

c. Using the results of (2) and (b) we get

& (5] glez) - V22

By making the indicated simplification, we can perform the inte-
gration, along with the initial condition that at t = 0, z = z;, to get

2
,2
zg" - 7 =3%\2gz3t and tefﬂuxzé(?) ;0
2

To get the efflux time, we have assumed that z=2z, =0 when the
container is empty.



7B.11 Disintegration of wood chips
' We start with Eq. 7.5-10, taking plane 1 at the top of the
slurry dispersion and plane 2 right at the outlet to the digester; we
also take plane 2 to be the datum plane for the calculation of the
potential energy:

1
%(v% —0)+(0—gzl)+;(p2 -p)=0
Therefore the exit velocity is

‘vz =\/2(%(P1 —Pz)+gzlJ

(100 Ib / inz)(144 in?/ ftz)(32.2 poundals/lb f)

= (2

- +(32.2 /s?)(20 £t)
m

=+/15550 =124 ft /s

Therefore the mass rate of flow at the exit is
_ _ 3 . 1 2\ _
w, = p0,S, = (65 b/t )(124 ft/ s)(§ 7 ft )_. 2910 1b,, /s

Next, we apply Eq. 7.2-3 (the momentum balance) to get the impact
force (assuming that the pressure and external force terms are quite
negligible): '

Fy,, = v,w, =(124 ft /s)(2910 Ib,, /s)(1/32 Ib;/poundals)
=10,900 Ib,
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7B.12 Criterion for Vapor-Free Flow in a Piping System.

In the piping system of Fig. 7.5-1, the criterion p > pyap might be violated either
(i) in the pump, or (ii) at a plane “A” just downstream of the final elbow. Lacking
data on the NPSH (net positive suction head) requirements of the pump at the
given operating condition, we can only test for condition (ii); further information
on (1) is available in Perry’s Chemical Engineers’ Handbook and in unit operations
texts.

Applying Eq. 7.5-10 from plane “A” to just above plane “2”, we find (since
va = vz and no fittings or enlargement loss occurs in this vertical section),

2
p2—pa _ v3La
which indicates the minimum pressure to be
1)2 LA-——>
pa=pr+p|g(za—za)+ 25— f
2 Ry

Using values from page 208 and setting ps = 1 atm = 6.8087 x 10* poundals/ft2,
we find the pressure at plane “A” to be

20
5+ 300 + 100 + 120
= 68087 — 40186 + 3 = 27905poundals/ft? |
= 0.41 atm

pa = 68087 + 62.4 {32.2(—20) + (85)] poundals /ft?

Since the minimum pressure is well above the vapor pressure of water at the system
conditions, the pipe will run full if the pump does. For mixtures, one must use the
bubble-point pressure rather than the vapor pressure.
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7C.1 End corrections in tube viscometers.

We apply the steady-state mechanical energy balance, in the
form of Eq. 7.4-7, with the assumptions of incompressible fluid and
no mechanical work:

) @Y, 1
2[(01) (712)) g(hl hz) p(pl pz)_Ev

where "1" and "2" are general labels for the input and output
streams. We label the plane at the bottom of the tanks as Plane 5, and
designate by p,.., the pressure at the outlet plane.

Then for Run A, we apply the balance to the region between
Plane 5 and Plane 2:

1(<v§’> (23)

) @ (vz>)+gL = (PA+PSZA Patm) év(5_>2)

Note that the kinetic energy term is nonzero, because the velocity
distribution at the inlet and outlet are not the same.

For Run B, we apply the balance to the region between Plane
5 and Plane 0 to get:

1(<v§’> (25)

2| (o)~ (vo>}+gL +— (p3+pgl ~po)=E,(5—0)

We now subtract the second equation from the first, noting that the
kinetic energy terms will exactly cancel, as will the viscous
dissipation terms, since the flow rates (and hence the velocity
profiles) in the two systems are equal. This gives

%[(PA —ps)+08(1a —15)+(p - Patm)| =0 *)

Next we apply the mechanical energy balance to the region between
Plane 0 and Plane 4 in Run B:

128



1 .
g(LB _LA)+;(pO —patm)zEv(O—)4)

Here the kinetic energy terms do cancel, because the flow is fully
developed at the inlet and outlet planes. The dissipation term can
now be calculated by using Eq. 7.5-7 together with Eq. 2.3-22:

Ff——)s(o_>4) _ 1

E,(0-4)= o) ;[(Po ~Pam )+ 8(Ls = Ly )]

But, according to Fn. 1 on p 50,

®o = P4 =(po —Pa) +P8(Ho ~ )= (Po ~ Patm) + P8 (Ls ~ L)
‘Therefore, by combining the last three equations we get

g(LB—LA)+%(p0—patm)=%(iP0_?4) (**)

Now Eq. (**) can be rearranged and then combined with Eq. (*) to
give:

:(PA “PB)"‘Pg(lB —14 )]
.
P —Pa IA“IB)
=PB7PA | pol 1-
gk LB"LA
=&ufiﬂgq+&—u)
Ly-L, \ Ly-L,

in agreement with Eq. 7C.1-1.
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7D.1 Derivation of the macroscopic balances from the equations of
change

a. Derivation of the macroscopic mass balance
We start by integrating the equation of continuity, Eq.3.1-4 over the
macroscopic flow system of Fig. 7.0-1:

I;;Qd == [(V-pv)av
V()

V(t)

We write V(t) to remind ourselves that the volume may be changing
with time because of the presence of moving parts within the system.
We now apply the Leibniz formula (Eq. A.5-5) to the left side and the
Gauss divergence theorem (Eq. A.5-2) to the right side to get

jpdv [ p(n-vg)dS=- [(n-pv)dS
dt V() S(t) S(t)

We now combine the two surface integrals thus:

d
Zi—tmmt == J-(n p(v—-vy ))dS
S(t)

Next we divide the surface up into four parts as indicated on p. 221,
right after Eq. 7.8-2. We also introduce the assumptions (i) and (ii)
listed in §87.1 and 7.2. Then we divide the surface into four
nonoverlapping parts, $=S5, +5, +5; +5,,, and write the right side of

the above equation as the sum of four contributions:

“"mmt —f(n-p(v-vg))dS - [(n-p(v-vs))dS - jnp(v vg))dS

:ﬁ 5 Sz
—j n-p(v-vg))dS

m

We now evaluate seriatim the terms on the right side:

The surface S, is the inlet plane, which is not moving so that vg =0,
and the outwardly directed unit normal vector n is the negative of
the vector u,, which indicates the direction of the flow. Since v=v,
at this surface is assumed (assumption (i)) to be exactly in the
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direction of flow, we may say that v =u,v,. The evaluation of the
integral proceeds as follows:

[(n-p(v—v4))dS =+[(u; -us0,0)dS = + [ pv,dS = p,(0,)S, = w,

51 Sl 51

where it has been assumed that the density is constant over the cross
section (assumption (ii)). The integral over the exit plane is evaluated
in the same way, the only difference being that n is the same as u,, so
that

—[(n-p(v-v4))dS = - [(u, - u,0,0)dS = + [ pv,dS = p,(v,)S, = w,

S, S, S,

On the fixed surfaces both v and v are zero, so that S; = 0. Also, on

the moving surfaces, v = vg, with the result that S,,. Therefore, Eq.
7.1-1 follows at once: |

d

Emtot = 101(01)51 — P, (Uz >Sz

and the definitions of w, and w, lead to Eq. 7.1-2.

b. Derivation of the macroscopic momentum balance
First we integrate Eq. 3.2-9 over the volume of the system:

| | (—%pv)dV=— J(V-pww)yV - [(VpV - [[V-THV + [pgdV

V(t) V(t) V(t) V(t) V(t)

- We now manipulate seriatim the terms in this equation so that they
can be interpreted. In so doing we make use of assumptions i-iv in
§87.1 and 2, and follow the procedures in () above. The first term is
rearranged by using the Leibniz formula (as applied to a vector
function), and then P, is introduced as the definition of the integral
over the momentum per unit volume, and the second term is
rearranged, thus: |
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J ) d
pv dV—— pvdV — |pv(vg-n)dS=—P, ,— ||n-pvvs dS
V{t)( ot dt V{n s{t) ’ ) dt S{tg | oF

The first term and third terms on the right of the momentum balance
are treated by using Eq. A.5-3, and the pressure term is treated by
using Eq. A.5-2:

= [(V-pvv)iV=- [[n-pvv}s
V(t) S

- “V~'l:]dV=— I[n-'l:]dS

V() 5(t)

~ [(Vp)V =- [npdS

V() S(t)

Finally, the last term is integrated (with g constant) and the
definition of the total mass within the system (given above):

+ jpng=+mtotg :

V(t)

When the above contributions to the momentum balance are
combined we get the following equation:

d
2=~ J[nov(v s JHS— [~ [[n-cHS +mi
S(t) | S(#) 5()

The surface integrals are interpreted by partitioning the surface of
the system as before: S=5,+5, +5; +5,,. The first integral on the

right is zero on the fixed and moving surfaces, and the mtegratlons _
on the inlet and outlet surfaces give the following:

—S{t!n -pv(v-vg)HS= —sf[——u1 -p(u0; )(uyo,)] —sj'[u2 -p(uy0, )(uy0,)]

= +u,0, <012 >51 — U0, <v§ >52
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where assumption (ii) has been used--that the density of the fluid is
constant over the cross-section. Similarly the contributions of the
pressure integral at the entry and exit planes are:

- fnpdS =+uyp,S - u,p,S,

Sl +52

where, according to assumption (iv), the pressure is assumed
constant over the cross-section. The integral of the pressure over the
fixed and moving surfaces contributes to the force of the fluid on the

solid surfaces, and the negative of that is the pressure force of the

solid on the fluid: F(s”_),f. Similarly the integral over the [n-t] term

over the fixed and moving surfaces gives a contribution Fgﬁf.
Therefore- |

- [npdS— [[n-tUS=FP +FD, =F

s—=f
51+5, 5145,

According to assumption (iii) we neglect the contribution of the [n-t]
terms at the entry and exit planes. When all of the contributions
above are collected, we get Eq. 7.2-1.

d
'L‘EPtot = "‘101<'012 >51u1 P <U§ >52u2 +p1Suy —poSup +Fo o +mg

and the definitions of w; and w, then lead to Eq. 7.2-2.
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8A.1 Flow of a polyisoprene solution in a pipe
We use Eq. 8.3-9, for the mass flow rate of a power-law fluid
in a circular pipe:

e aR3p ((@0 —'(P,_)R)V"
~(yn)+3\  2mL

Consider two systems, labeled I and II differing only in the radius R
and the length L. Then, for the same mass flow rate and the same
pressure difference, and also the same values of the density and the
power-law parameters, from the above equation we know that the
dimensions of the two systems will be related by

RI3+(1/n) _ RI3I+(1/")
n i/n
L" Ly

Solving for the radius of the second system, we get

1/(3n+1)
L
Ry = RI(‘LI—I)
I

Inserting the numerical values for this problem gives

R =(1.3 cm)(30.6 m)s/s 195 em
I 2 10.2 m ’
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8A.2 Pumping of a polyethylene oxide solution
The starting point is the same as for Problem 8A.1. The mass
rate of flow must be the same for the two designs, so that

mR}p ((ﬂ—ﬂ)&)l’":z, mR3p ((PO—MRZJV"
(Yn)+3\  2mL (n)+3\  2mL

Therefore
R3+(1/n) _ 2R23+(1/n)

1

whence

BZ_ 3+(1/n) _l
R, 2

Therefore

D2 R2 ( 1 ) n/(3n+1)
2

and, forn = 0.6

1106/28 1102143
D, = Dl(—) =(27 _cm)(—) =23.3 cm
2 2

¢z



8B.1 Flow of a polymeric film

a. The momentum flux distribution is the same as Eq 2.2-13,
inasmuch as this result depends only on momentum conservation,
and not on the constitutive relation.

b. Next we write the power-law model as

Z —_m -n—l@z___m(__dvz)n_l dvz'_ m(__dvz)n
dx Y dx dx dx dx

which is the appropriate form, because dv, /dx is negative.

c. When the above expression for 7, is substituted into Eq.

2.2-13, we get a differential equation for the velocity

n 1/n
m(—CZ;z) ’—'(chosﬁ)x or _4o, :(pgcos[j’) x ¥

dx m

This equation is integrated to give

., [ pgeosp)"
2 = ( m ) (1/n)+1 TG

Application of the no-slip condition at the wall gives

n)+1

0= (ngOSB +C,

m ) (Yn)+1

Subtraction of the last two equations gives

o= ( pg COs ﬂ)l/n 6(]/n)+1 _ x(l/n)+1
m (Yn)+1

_ (986:105 ,3)1/" (1/73 _ [1 ) (§)<vn)+l }

d. Then the mass rate of flow in the film is

€3
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5 Y
w=fgv f: pvzdxdy=pw(p g ;osﬁ ) (

1n

L

n—-1l,m-ou ngW53 COSB

_ pw(pg6cosﬂ)1/" 52
m (Yn)+2

3u

g-4



8B.2 Power-law flbw in a narrow slit
Substituting Eq. 8.3-11 into Eq. 2B.3-1, we get for —-B<x<0

_m(dvz)":('d"o—'ﬂ"L)x 2 _(('PO—?L)JI/"(_X)%

dx 2L d(—x) - 2mL

Integration then gives

- (300 _@L) In B(l/n)+1 __(__x)(l/n)+1
*\ 2mL (Yn)+1

) (—‘PO__'(PL)B' In B (-x (yn)+1 )
"( 2mL ) (1/n)+11 (F) (-B=x<0)

This may be combined with Eq. 8.3-13 to get a solution that is valid
for -B<x<B
(Yn)+1 ]

v, = ( (?Oz_m? )B)W (1/n13) +1 [1 B

X

B




8B.3 Non-Newtonian flow in an annulus
a. From the equation of motion, the momentum-flux
distribution is

l—c-i—(rz',z)zO or )

rz

rdr r

The appropriate expression for the momentum flux component is

et 2 _m(_dvz)""ldvz_+m(_dvz)"
S ar ) ar dr

When the above two expressions are combined, one gets a
differential equation for the velocity distribution, which can be
integrated to give (after applying the boundary conditions)

51—(1/n) —
0_0 = >Tam g (he;e &=r/R)

- b. In the limit that n—1 and m—>,u, we have to use
L'Hbpital's rule

£ £
Y. lim—é——— lim &' Ing lné (see Problem 2B.7)
v, 0k -1 &0k ‘Ink  Ink |

¢. The mass flow rate is then
| R ‘ o EXWm _
w =27 . pv,rdr =27R*pv, j;{%mf}ic’j

_ 2aR%py, [1-k>WM 1?2
k7 —1{ 3-(Yn) 2

(n#3)

d. When n =1 use of L'Hopital's rule gives

_2mx’R? pvo ml_l—xz
1-x2 K 2
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e. When L'Hépital's rule is used we get

_ 2 1""(2 _ 2
w = 7R pvo(————zm(l/’() K J



8B.4 Flow of a polymeric liquid in a tapered tube
We consider a small region of the tapered tube to be a
straight tube over a short distance dz; then we can write "locally”

_ 7R’ [_dﬂ" R T/"
(Yn)+3L dz 2m

Take the nth power of both sides to get

d® Zm[ w (1 H"
——= | —+3
dz R | znR’p\n

in which R is a function of z:

R=R, +(R’“ ZROJZ

It is easier to integrate the differential equation if we rewrite it as

_d?PdR__d’(P(RL—RO)_Zm w (1+3)"
dR dz  dR L R | nR%p\ n

Then when this equation is integrated with respect to R, we get

?, 2mL w(l ) "R 1
—[Ttap = ~+3 —5ar AR
[ (RL - RO )l: np\n ] J‘Ro R3n+1
Therefore
n -3n _ p-3n
P, -P, = 2mL w (l+3) R =R,
R; =R,y )| mp\n -3n
=(Z_"}£) _”L(l+3) (R -Re™
3n )| mp\n R, -R;

This is the power-law analog of Eq. 2B.10-3.




8B.5 Slit flow of a Bingham fluid

a. For |x]<x, (i.e., in the region where the yield stress is not
exceeded), 1 =<0 (according to the upper equation of Eq. 8B.5-1. But
the expression for the shear stress is, from Eq. 8.3-2: 7,, = -ndv, /dx.
Since the shear stress is finite, the velocity gradient must be equal to
zero. This is the plug-flow region.

For |x|>x, (i.e., in the region where the yield stress is
exceeded), the lower equation of Eq. 8B.5-1 has to be used. This
means that in the region where x > x,, the velocity will be decreasing
in the positive x direction, so that y = —dv, /dx is required so that y
will be positive. Similarly, when x<-x,, the velocity will be
increasing in the positive x direction, so that y = +dv, /dx is needed in
order to guarantee that y be positive. Hence we have:

dv
—_ V4
T =~ Mo dx_TO for -B<x<-x,
v
T, = U dxz+T° for +x,<x<+B

Since the flow will be symmetric about the plane x =0, we need solve
for the velocity distribution only in one half of the slit. We choose to
work with the region 0<x<+B.

b. Substitution of the upper relation of Eq. 8B.5-3 into Egq.
2B.3-1 gives

L dx Mol Ho

—Uy—=+ T, =
0 7, T Yo

Integration gives:

vz :-sz +ix+c
2p0L Ko

Applying the no-slip boundary condition at the slit wall (z = B), we
get .



0=-T0"®p Tp.
2uoL Mo

Subtracting these last two equations eliminates the integration
constant and gives

_ 2T 2 ,
. (‘PO '(PL)B 1_('_’(_) _&E(l__x_) (+x, <x<+B)
2u,L B Ho\ B

(4

v, = (Po —®1)B° _1—(£)-)2
2u,L B

’L'OB( xo)
-—1-= (0<x<x,)
:’ Mo B ’

c. The mass flow rate is then obtained from

*+B +B
w=Wp[ v,dx=2-Wp[ " v,dx
One could split this integral up into two parts, one for the region
0<x<x, and the other for +x, <x<+B, and evaluate them using

the velocity profiles worked out in (b). A better way to do the integral
is to integrate by parts:

w= 2.Wp[v2x|g - _[: x( CZ;: )dx]

Then the first term is zero at both limits, and the second term has no
contribution from the portion from x to x,. Hence

w= 2-ij':; x(— i;:)dx = 2-ij: x(f—"%x - ;—Ode
0 0
B

=2-Wp (?0 _ 0DL)x?’ _ Tpx”
3uoL 24 %

=2-Wp (3°0 —'PL)B3 B Tox” B (3°0 —?L)xg’ N z‘oxg}
3uoL 2H0 3oL 244
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=_2_('(PO—'(PL)B3Wp 1_§ 7,L +1 7L ’
3 pl 2{ (Py-®,)B) 2| (P, -%.)B

In going from the next-to-last step to the last step of this
development, we have used the defining equation for x,, given in Eq.
8B.5-2, to eliminate x; in favor of the yield stress.

When the yield stress goes to zero, The above result

simplifies to the expression given in the answer to part (c) of Problem
2B.3 for the Newtonian fluid.
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8B.6 Derivation of the Buckingham-Reiner Equation

The equation of motion for tube flow can be integrated to
give 7, = 7x(r/R), where 7 =(®,-®)R/2L (cf. Eq. 2.3-13). The
outer boundary of the plug-flow region is ry = (7,/7x )R.

The Bingham fluid (see Problem §B.5) gives for the shear
stress component

T,, = —Ml d;r + 7, (rzry) and drz =0 (r<r,)

In the region (r>7,), we can combine the shear-stress expression
with the Bingham formula to get

PP R—
ﬂod 0=TRp

- Integration gives

TR
r’ +——r+C
2.UOR Mo

z

The integration constant is determined from the boundary condition
that the velocity vanishes at the tube wall (the "no slip condition").
Then we get

WG] e

Since the velocity must be continuous at r =r;,, we can set r =7, in
this last expression and get

”Z=§‘f[1—(flg” (rorR/R (R ()

{3 (A 20 oo
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The mass rate of flow is then
w= f()zﬂ_[f pv,rdrd0 = 27:;0_’;2 v, rdr
We then integrate by parts (cf. Problem 8B.5) to get

— om0l 1r%0 [R —1[Rp2 40
w—2ﬂp[2r N 2,[0” I dr:l

The first term is zero at both limits, and the second contributes
nothing in the range (r <r,). Therefore we get

w=mp[*rt| BL_%o g
" \Mo R py

4
:JTR3TRp 1_é El +1 E—O—
4u, 37z ) 3\ 7x

In getting the final expression, r, has been eliminated by using the

relation r, =(7,/7z )R. When the yield stress is set equal to zero, this

result simplifies to the Hagen-Poiseuille relation for Newtonian
fluids.
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8B.7 The complex-viscosity components for the Jeffreys fluid
a. The yx component of Eq. 8.4-4 is

dt,, . Ay yx
Tyx +/11'_di—'=_<n0(}/yx +)'2 —d_ZJ

Dividing by A, rearranging, and introducing complex quantitites,
we get

de 1 /° iw d iw
i TT},,C:_%T_(m{e Fea Lol f})

o
- —%%—%{e"‘”(lﬁ/lzw)}

The only reason for using the complex representation of the
trigonometric functions is that then we have to integrate only
exponentials, and not products of exponentials and trigonometric
functions.

Thus, we now have to integrate the above first-order
differential equation to which the solution is

Mot” b it
7y = =B RR{[! e e (L4 id,0)d +C)
1

If we assume that the fluid is in an unstressed state at ¢t = —, then
the integration constant C is zero. The integral can now be evaluated
to give:

T

. 0 .
__NoY e—t/xlm{ (1+id,0) o ttih piot } = —no7

, 091{(1“" iazw)e,.wt}

A (YA,) +iw (1+id,0)
=-ny7°R (1+i2,0)1 _;/llw) (cos wt + isin wt)
1+(4,0)

Then we collect the real and imaginary parts within the braces, and
discard the imaginary parts to get

g-14



1+ll/120)2 -0 (A'l —)»2)60 -0 -
T =—|No———= |y coswt- ——=— 1Y s wt
Y { 0 1+(/11co)2 }/ o 1+(/11a))2 4

By comparing this result with the defining equation in Eq. 8.2-4, we
see that the quantities in the brackets are 7n'(w) and n”(w)
respectively. Equations (F) and (G) of Table 8.5-1 are obtained by
setting A, =0 and A, = A. This shows that the Giesekus model is a
nonlinear generalization of the linear Maxwell model. On the other
hand, the Oldroyd model, as may be seen from Eq. 8.5-12 and 13, is a
nonlinear generalization of the Maxwell model.

b. According to fn. 3 on p. 246, the Jeffreys model can be
regarded as a superposition of the Newtonian model and the
Maxwell model. For the Newtonian model. For the Newtonian fluid
(here designated by s) we have

n’'(w)=mn, and n”(w)=0

That is, the Newtonian fluid shows no phase difference between the
stress and the velocity gradient. For the Maxwell fluid (here

designated by p) we have, by taking just one term in Egs. 8.4-14 and
15

My
1+ (L0)°

nplla)

and "(w)=——=
@) 1+(A0)°

n'(w)=

In fn. 3, the connection between the constants of the Jeffreys model
and the Newtonian and Maxwell models is given:

M=ns+Mn, and A, =ﬁ—s—n—/11
s T Hp

These relations give 1, and 4, in terms of 7, and 7,. Presently we
will need 7, and 7, in terms of 7, and A,:

MoA,
A

and n, =201, - 1,)

ns = 2,

g.15



We now get the contributions to the complex viscosity for the Jeffreys

fluid by summing the contributions of the Newtonian and Maxwell
fluids:

n, ny(1+4,0)° + n,
(o) 1+(ho)
_ (773 M Up)"‘ s (ﬂ'lw)z _ Mg + MoAiA,0°
 1+(he)  1+(Ao)
. 1+ 44,02
1+(L0)

n(w)=n,+
1

Ao (4 -4,)e

() = L 2 S
)= 0 o~ ™ 12 (o)

This is in exact agreement with the results obtained above in (a).

g1



8B.8 Stress relaxation after cessation of shear flow
a. If one writes out the 3-constant Oldroyd model for the

special case of steady-state shearing flow, component by component,
one gets (cf. Egs. 8.5-5, 6, 7, and 8):

7'-yx +%;{’lyrxx _%/llyfyy = —‘770?"? Tax _)LlyTyx = 0; Tyy +A’1}}Tyx =0

and 7, =0. When these equations are solved simultaneously, we get

—ny—l—— and 7 ——nfly——!—
1+ (Ay) 1+ ()

This expression agrees only somewhat with the data of Fig. 8.2-4.
The equation shows the curve for viscosity starting out with the
zero-shear-rate viscosity, and then decreasing--which is correct.

However, the equation gives 1oy~ for high shear rates, and this is
nonsense. Then one would have Tyx ©° }'/_1 at high shear rates; this

would mean that as one applies more shear to the fluid, the velocity
gradient decreases! Therefore the model has to be labeled as
unusable at high shear rates. In other words, it can be used only to
describe small deviations from Newtonian behavior.

b. For unsteady shear flow, Eq. 8.5-8 describes the shear
stress. When the motion is stopped, y =0 becomes zero, and the

equation gives T,, +A;(d7/dt)=0, which can be solved to give

7, =Ce” 41, The constant is then determined by the requirement that

the solution must match at t = 0 with the steady state expression in
(a). This leads to Eq. 8B.8-2.

¢. The normal stress in steady flow was given in (a).
Arguments similar to those in (b) lead to

Ty =~ nO/ll’yz e_t/ll

1
1+()»1)'/)2

This predicts (correctly) that the normal stresses also relax after

cessation of flow, but experimentally it is found that the normal
stresses relax more slowly than the shear stresses.
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8B.9 Draining of a tank with an exit pipe
We begin by writing the formula for the mass flow rate
through the exit pipe (with radius R;) for a power-law fluid thus

_ #RZp (_d? Ro)l/"_ aR3p (pg(h+L) Ry}
(1/n)+3\ dz 2m (Yn)+3 L 2m

Note that this is a quasi-steady-state approximation. We now equate
this to the rate of mass depletion in the tank

, dh _ aR3p (pg(h+L) R\
-R“p—
it (yn)+3\ L 2m

We now divide through by nR*p(h + L)]’/"v and integrate (for n#1)

_ J‘ o dh = RS ( PgRo)l/n J‘tefﬂux it
Hn+L)"  [(yn)+3]R*\ 2mL) 0

Performing the integration and solving for the efflux time we get

/ _( 2mL )1/" [(1/n)+3]R? [( H o+ L)) _ - }
efflux — )

P8R, Rg ~(Yn

To check this result we can let n—1 and m— u; we make use of
Lhopital's rule to get the result of Problem 7B.9(a):

oul \aR? .| (@/dn){(H+L)" 0 - p-0m}
tefﬂux =( )—-—— i

pgR, ) RS not (4/an){1-(1/n)}
_(2uL ) 4R (H + L) [in(H +L)|(1/n?) - LU [In L](1/n?)
pgR, ) Ry -1 (1/n?)
o (8'uLR2 _1:_{_
| pgRE )h.l(“— L)
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8B.10 The Giesekus model |
a. We have to start by expanding the x* in Eq. (E) of Table
8.5-1 as a function of (A7)

» 1+ 316a(1- a)|(A7)? - i[16a(1- &)’ (A7)* +---—1
x = 8a(1- a)(A7)
=1-4a(l-a)(Ay)*+--

and then, the series expansion of the square root of this will be

xX= \/1 —4a(l-a)(Ay)*+-- =1-2a(1- a)(A7)*+---
Next we get f to the same order (f is defined in Eq. (D) of Table 8.5-1)

— 1- [1 - 2064(1 - a)(Ay)? +] ) o
f= 1+(1- 2a)[1._ 20(1- a)(A7)? +] = a(ﬂ,y) foee

Then the viscosity expression (of Eq. (A) in Table 8.5-1) becomes

1- a(Ap)?+--)
n__(1-e@n _ 2) =1-2a(A})*+- — 1
Mo 1+(1—2a)(a(}ty) +) (47)* -0

Similarly, the first normal stress coefficient (Eq. (B) of Table 8.5-1)
becomes

Y, _(a(M/)2+---)[1—(a(/17)2+---)] 1

214 a[l—(a(/iy)z +)] (Ay)? w?—ml

and the second normal stress coefficient (Eq. (C) of Table 8.5-1) is
¥, =-anA =-1 0¥, which shows (correctly) that the second

normal stress coefficient is smaller than the first normal stress
coefficient and has the opposite sign. |
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b. We begin by dividing numerator and denominator of the
expression for y* by (17)* and then replacing 1/Ay by & (a small

quantity):

8\/8 +16a(l-a)-¢° ew/16a(1 a\/1+ [1/16a(1- a)]e? - &

x 8a(l- o) 8a(l- o)

We now expand this last expression in powers of €:

. e(1+[1/32d(1— Q)le*+-)- € e(1-g+-)
A= 2 a(l-a) - 2\a(l-a)

Then we take the square root and get

Ve(1-1e+-)
V2[a(1-a)]"

Z:

Then fis given by

1-
f= T = (1= 1)1 (1-20)7+] = 1-22(1- @)
Then the viscosity and normal-stress coefficients are

n__ (- _(@x-a)-)

e 1+(1-2a)f  2(1-a)+-

_ Co-afe | a1,
-l zjei-a) TV a a7’

¥, _f(l—af)( 1 )Zz [(l—a)+---- ( 1 )2

2mpA  a(l-f)\ Ay 2x(1- &)+ \ Ay

[al a)]1/4 3/2+m
V2o (M')
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¥, :_( 1 )2+...
Mo Ay

These expressions show (correctly) that the normal stress coefficient
has a steeper slope at high shear rates than the viscosity. They also
give a second normal stress coefficient that is smaller than the first
normal stress coefficient, and that the two coefficients have opposite
signs (this is in agreement with the experimental data for flexible
polymers).

c. For elongational flow, we first get the limit as Aé¢ —0
(please note that this £ is not related to the € in part (b)). In this limit
we can expand the square root signs that appear in Eq. (H) of Table
8.5-1 thus:

71 1 . . ]
M 234 (1-2(1=2a)Aét—1— (1= 20)Aé—-
T 6a[3+lé( (1-2a)Aé+ (1-2a)Aé—--)
1 1 .
—-—6—6—1[34'1'87(—3(1—2&)&8‘1"")]—1+"'

In the limit that A¢ becomes infinite, the quadratic terms under the
square root signs dominate and we get

134092
3n, 60 - 3a

Thus, the elongational viscosity remains finite, unlike the Oldroyd
model for which the elongational viscosity becomes infinite.
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8C.1 The cone-and-plate viscometer
a. According to Eq. 2B.11-1, the velocity distribution in the
cone-and-plate system is given approximately by

'LQ{L@/_Z)_-QJ

r Vo

The shear rate is given by the relation two lines above Eq. 8.3-2. In
this problem the only nonzero components of the rate of strain tensor
are ¥, and ¥ 4. This can be seen in one of two ways: (a) Look at the

right side of Egs. B.1-15 to 21, but without the factor — x4 and with the
div v terms set equal to zero; these are the spherical components of
the rate of strain tensor given in Eq. 8.3-1 or Eq. 8.4-1; or (b) add to
the components of grad v in Egs. (S) to (AA) in Table A.7-3 the
corresponding transposes in order to construct the rate-of-strain
tensor according to Eq. 8.3-1. Therefore, from Eq. B.1-19

,}} =J./ =Sin.6——a—— v¢ z—l—iv—?-
9 190w 20\sin@) r 90

since the angle between the cone and plate is extremely small, which
means that sinf =sin} 7z =1. When the velocity distribution of Eq.

2B.11-1 is inserted in to the above approximate expression for the
nonzero components of the rate-of-strain tensor we get

9y Q
Ye¢—7¢9"‘é'e" - —“;/;

Hence the shear rate is

Y= \/%(T’e«pf’«pe + 7¢979¢) =E¥op = ¢‘I%

We now have to choose the proper sign. Both Q and y, are positive
quantities. Therefore the plus sign must be selected.
b. The non-Newtonian viscosity is obtained from the ratio

n= (194, /- )'/94,). Hence we have to find a way to get the shear stress
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from the measured quantities. As pointed out in (a), since the shear
rate is constant throughout the gap, all stress components are also
constant. This means that the torque can be calculated from the shear
stress by integrating shear-stress times lever arm over the surface of
the plate from zero to R:

—_— 3TZ
Yoo =5 R3

T,= _[02 nff T Ty le_”/zrdrdd) =27R’t,,  whence

Then the non-Newtonian viscosity is given by

n= Top =(3Tz/2”R3)=3TzWo
7o (W)  27R°Q

c. Equation 8C.1-2 follows directly from Eq. B.5-7, after
dropping the terms on the left side and the 7, and 7, terms on the
right side; the terms 7y, and 7,, must, however, be retained, since

we know that normal stresses are nonzero in shear flow. Then Eq.
8C.1-3 follows from =z, =p+ 7,, and some minor rearranging, and
Eq. 8C.1-4 follows from the definitions of the normal stress
coefficients and from the results of ().

Next we integrate Eq. 8C.1-4 from the outer rim of the cone-
plate system to some arbitrary position r:

[ drge =—[(¥, +2%,)7?][ dinr

The normal-stress coefficients are constants, because of the
constancy of the shear rate over the gap. Therefore we get

o0(r) = oo (R) - [(¥, +29,)7]In -
- 1, (R)+ [0 (R) =75, (R)] - [(¥, +29,)77 Jin -

=P, — 7 -[(F, + 2\1!2)72]111%
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Here we have used the boundary condition that the normal stress at
the rim is equal to the atmospheric pressure, and we have also used
the definition of the second normal stress difference.

d. The force exerted by the fluid in the z-direction on the cone
is then obtained from the result in (c) as follows:

2z ¢R
F,= Io fo oo (1)rdrdg — 7Rp,

= 27:[5[;9” — W,y - [(W, +2%,) 7 m%}rdr - nR%p,
. 1 .27l

=—7R*¥, 7% - 27R*|(¥, +2¥,)7? || (In&)&dE
. r .9 1

=—nR¥W, 7 — 27R2[(¥, +2%,)72|(1 €% In& —%52)|0

=-R?Y,7? + 1 7R*¥, 72 + AR*¥, 72 = 1 nR* ¥, 7>

Here we made use of the fact that hm§ ln’g' 0. Solving for the first

normal stress difference, we get fmally

2F,
R2y2

¥ (7)=

e. If one measures 7y, (r)—p, as a function of 7/R using
flush-mounted pressure transducers, then, knowing ¥, from (d), the
second normal-stress coefficient can be calculated from Eq. 8C.1-5.
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8C.2 Squeezing flow between parallel disks

This problem is solved by a quasi-steady-state method.
Conservation of mass states that, for an incompressible fluid, the
mass rate at which the fluid crosses the cylindrical surface at r should
equal the rate at which the mass between the plates within the
cylindrical surface at r decreases. The rate of mass displacement
caused by the disk motion is:

w(r) = mr’p(-H) where (H = dh/dt)

To get the mass rate of flow between the two disks, we adapt the
result in Eq. 8.3-14 by making the following correspondences locally:
W—2ar, 2B—->H, (P, -®,)/L—>—-dp/dr, and w— w(r). Then we
get for the mass rate of flow emerging from between the disks:

L _2@m)(3H)( dp (3H)
wir)= (1/n)+2 ( dr m)

Equating the two expressions for w(r) we get a differential equation
for for the pressure distribution p(r) between the disks

_d_p:[r<—H>]”[(1/n>+21"(2m) |
dr [Hz]" H

This may be integrated to give

n g 21— Hy'[(yn)+2]" k.
—J: HLH-{ ] .‘. dr

or

_2m(-H)"[(Yn)+2]" gt ™!
P~ Paim = H2 n+l 1_(72")

which is the power-law equivalent of the Newtonian result in Eq.
3C.1-13.
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When a constant force F; is applied to the upper disk, this
force must be resisted by the pressure in the fluid at the upper disk,
integrated over the disk (we include here also the normal stress 7,
even though we know that it will not contribute for a generalized
Newtonian fluid--the proof for this is similar to that given in

Example 3.1-1 for Newtonian fluids):

F,= jjﬂff(p —Po + T, Jrdrd0 |
o, 2m(-H)"[(Yn)+2]" g+

Jp(1-€%)eae

H2n+1 n+ 1
_2am(-H)"[(Yn)+2]" R
B H* n+3

This is now a differential equation for the motion of the upper plate
as a function of time:

- H _( (n+3) )l/n 1 EYn
HV2 \27amR™2 ) | (Yn)+2) °

This can be integrated to give:

[ dH ( a+3) V" 1 R
Hy pg(yn)+2 "\ 27rmR™3 (1/n)+2 0 Jo

or

11 _( (n+3) )lln((l/n)n)l:gnt

HWn - glmpst =\ 2gmR™2 )| (1/n)+2

This simplifies properly to Eq. 3C.1-16 for the Newtonian fluid.
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8C.3 Verification of Giesekus viscosity function

a. Eq. 8.5-4 is the same as Eq. 8.5-3 with A, =y, =4 and
A, =U, =y =0, but contains in addition a term —(A/ny)af{t -1}
Therefore, for steady shear flow, we may take over Egs. 8.5-5 to 8 by
making the appropriate changes in the constants, and by adding the
extra term. To do the latter we need to calculate the components of
the product {7 - 1}; this is most easily done by matrix multiplication:

' 2 2 -
Tyx Tyx 0 Tx Tyx 0 T T Tyx Tyx (Txx + T.W ) 0
— 2 2
Tye Ty 07Ty 7, 0 |= Tyx(’[xx + TW) Tox + Ty 0
0 0 7, A0 0 =z, 0 0 72

2z

When we use this result, Eqs. 8.5-5 to 8 become modified as follows
for the Giesekus model:

Ty = 2AYT,, - (A/no)cx(r%x + rjx) =0

Tyy - (A/no)a’fzx + zj =0

T~ (/’l'/nO)aTi =0

Ty = ATy = (A 1) 0T Ty + T, ) = =0T

When these equations are multiplied by A/n, and dimensionless
variables are introduced, we obtain Egs. 8C.3-1 plus an equation that
gives T, =0 (this equation gives another solutions which is
physically unacceptable).

b. When these dimensionless equations are written in terms
of the dimensionless normal stresses we get

Ny[1- (N, +2N,)]=2T,T
N, = a(T2, +N3)
T, [1- a(N;, +2N,)]=~(1-N,)I

c¢. The second equation in (b) can be solved at once for the
dimensionless shear stress:

g-21



N
zj = —az—(l— aN,) (*)

Division of the first of the equations in (b ) by the third gives a
relation for the dimensionless first normal stress difference in terms
of the dimensionless second normal stress difference and the
dimensionless shear stress; into that we can substitute the equation
just obtained above and get

2N, (1-aN,)
a(1-N,)

N, = (**)

Next, we square the third equation in (b), and then insert the

expression for fo from (*) and the expression for N, from (**), to
get

o _ Na(1- ol )[1+(1-2a)N, I
B a(1-N,)*

(>(->(->(-)

d. To solve the final equation in (c) Giesekus (see p 87 of Ref.
5 on p. 262) suggested making the following change of variable:

1-%
N, =
2 1+ (1-2a)y

Then the various factors in the final equation in (c) are:

1-N. = 2x(1-«a)
2 1+ (1-20)x

1-aN, = (1+x)(1—a);
1+(1-2a)x

__21-0)
T 1+(1-2a)y

1+(1-2a)N,
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When the last four equations are substituted into (***) we get

2= 1-x°
4a(l-a)y*

This is a quadratic equation for y* which may be readily solved:

, _1+16a(l-a)* -1
8a(l- a)l?

=1-4oa(l1-a)l*+-.

Then this result along with Eq. 8C.3-7 gives the second normal stress
difference as a function of the shear rate. Having this, the shear
stress and first normal stress difference can be obtained from Egs.
8C.3-4 and 5.

As the shear rate goes to zero, one gets n— n,, ¥, = 21,4,
and ¥, - —anyA. The functions given in Table 8.5-1 are given in
Giesekus's paper as well as in R. B. Bird, R. C. Armstrong, and

O.Hassager, Dynamics of Polymeric Liquids, Vol. 1 (1987). pp. 361-
368.
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8C4 Tube flow for the Oldroyd 6-constant model
The non-Newtonian viscosity for the Oldroyd model is given
in Eq. 8.5-9. Therefore for tube flow

140,02
Uer - 770')/(1_'_ 0'1'}"2)

From Eq. 2.3-13, we have the expression valid for any kind of liquid

r = (Po =, )r
rz 2L

Combination of these two results gives

_ 2oL 1+0'272
P, -P, 1+ 0,7°

The mass rate of flow through the tube is given by

w= pf()znf: v,rdrd@ = an.[f v,rdr= an[%vzrzlg - jo 172 d;Z dr]

The first term in the last result is zero at both limits. We next
integrate by parts again

e M‘ woRO 4ol (]

in which yy is —dov, /dr evaluated at the tube wall. This result is good
for any non-Newtonian fluid. We now specialize to the Oldroyd
model:

3 3
. 2n,L il (1+0,7° )| .5,

3
. 2n,L 072(1+nY) 1
= 17pR3j, - Lmp| =0 | (% YdY —
3TPR TR 3””(&-@ . 207
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in which Y = 6,7% and n=o0,/0,.
The expression for r given earlier may be evaluated at the
tube wall, and this gives

2007 :L ((1+ 0,72 onL ) (1+nX) 1
R= 0/ R 2/ R — 0 X *
?O—m(naly,% P, -, VX 1+X ) o, )

in which X = 5,7%. Next, multiply the equation for w. by 3./c; /7poR?
and eliminate ®, — ®; by using the expression for R just above to get

1 (1+X)°
Q=8P X - (1] 0 ()
in which
_x(1+nYY’
f(X)= j(l Y)YdY
=1n°X? -3n*(n-1)X +3n(n-1)(2n-1)In(1+ X)
~5XG’ )1() [6n+(7n-1)X] (***)

This gives, in dimensionless form, the mass rate of flow in terms of
the wall shear rate. The latter may be eliminated in favor of the
pressure drop by using the expression for R above. That is, to get Q
in terms of the pressure drop, the asterisked equation have to be
combined. The curves thus obtained may be found in the original
publications (refs. 6 and 7).
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polymer molecules "unravel” under the influence of the elongational
flow.

e. The paper by H. H. Saab, et al., is an extensive comparison
between the Curtiss-Bird phase-space theory for polymer melts and
the available experimental data on a host of rheological properties.
An extensive comparison of the results with those of the theory of
Doi and Edwards confirms that in almost every instance, the
Curtiss-Bird theory is to be preferred over the Doi-Edwards theory.
In the Curtiss-Bird theory, the polymer molecules are modeled as
Kramers freely jointed bead-rod chains, whereas in the Doi-
Edwards theory, mixed modeling is used. See also DPL Chapter 19.

f- The papers by J. D. Schieber show how the extension of the
Curtiss-Bird theory to polydisperse polymer melts can be implement-
ed. Both the log-normal (Wesslau) distribution of molecular weights
and the Flory-Schultz distribution are used. The curves for the
viscosity, first normal-stress coefficient, elongational stress growth
viscosity, and steady-state elongational viscosity were obtained.
These curves often differed appreciably from those for monodisperse
samples. Comparisons with experimental data are given in the
second of the two papers. See DPL, Example 19.6-1.

General Comments:

i. The rodlike connectors are generally much more difficult to
deal with than the springlike connectors, because it becomes
necessary to use nonorthogonal coordinates to describe the chain
space. For Hookean springs, one can perform many of the kinetic
theory derivations with relative ease. For non-Hookean springs, it is
possible to make some assumptions that enable analytical results to
be obtained. But even for rigid dumbbells and three-bead-two-rod
models, analytical calculations become prohibitively time consuming.

ii. To overcome the problems associated with the use of rigid
connectors in modeling, molecular dynamics and Brownian dynamics
have proven to be useful. Also, Brownian dynamics can be useful
when considering the flow in constrained channels, where the
interaction with the containing walls have to be considered.
Brownian dynamics proves to be particularly helpful in getting
information about the actual motions of the polymer molecules
during various types of flow.
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9A.1 Prediction of thermal conductivities of gases at low density.

a. Since Argon is monatomic, we use Eq. 9.3-13 to predict its k in the low-

density gas region:
T IM
k= 1.0801 x 10~ YL
o2Q,

Here T = 100 + 273.15 = 373.15K, and Table E.1 gives M = 39.948, ¢ = 3.432;&,

e/k = 122.4K for Argon. Then KT'/e = 373.15/122.4 = 3.049, and interpolation in
Table E.2 gives 2, = 1.0344. Equation 9.3-13 then gives

10—+ V/373.15/39.948

k= 1.9891 34322 x 1.0344

=499 x 1077 cal/s-cm-K

which is within 1.5 percent of the observed value.

b. Equation 9.3-15, Eucken’s formula, gives
k= (é,, + 1.25R/M) u=(Cp+1.25R)u/M

with R = 1.987 cal/g-mole-K. Insertion of the data for ép and p, and for M from
Table E.1, gives '

1929 x 107

— =7 . ‘.
3001 =620 x 107" cal/s-em-K

for NO, k= (7.15+ 1.25* 1.987)

= 0.02595 W/m-K
vs. 0.02590 W/m-K from Table 9.1-2.

1116 x 10~

for CHs, k= (8.55+1.25 x 1L.98T)—

= 0.03212 W/m-K
vs. 0.03427 W/m-K from Table 9.1-2.

= 768 x 1077 cal/s-cm-K

e



9A.2 Computation of the Prandtl number for gases at low density.

Use of Eq. 9.3-16, with molar heat capacities 51, =M é'p calculated from
the given values é'p and molecular weights M from Table E.2, along with R =
8.31451 x 10® J/kg-mol-K from Appendix F, gives the predictions in column (a)
of the following table. Computation of Pr from its definition, Eq. 9.1-9, and the
tabulated Cp, p, and k, gives the values in column (b). The predictions are closely
confirmed for He and Ar, but are less successful for the polyatomic compounds.

(2) | (8)

Gas Pr from Eq. 9.3-16 Pr from é'p, i, and k
He 0.667 0.670
Ar 0.667 0.665
H, - 0.735 0.714
Air 0.736 0.710
CO, , 0.782 0.769
H,O (M = 18.016) 0.764 0.862



9A.3 Estimation of the thermal conductivity of a dense gas.

a. Table E.1 gives the following critical constants for methane (CHy): T, =
191.1 K, p. = 45.8 atm, and k. = 158 x 107° cal/cm-s-K. The reduced conditions
for the prediction are then T, = (459.7 + 127)/(1.8 x 191.1) = 1.71 and p, =
110.4/45.8 = 2.41. From Fig. 9.2-1 we find k, = 0.77 at that state, giving

k =krke =0.77 x 158 x 107°
=1.22 x 107* cal/cm-s-K
= 0.0294 Btu/hr-ft-F.

which is about 4% above the observed value.

b. For this calculation, we need to predict the viscosity of methane at 127
F (325.9 K) and low pressure from Eq. 1.4-18. We find ¢ = 3.780 and kT/e =
325.9/154 = 2.116 and 2, = 1.153 by use of Tables E.1 and E.2. Hence,

V16.04 x 325.9
(3.780)2 x 1.153

p = 2.6693 x 1075 =1171 x 1077 g/cm-s

Next we use the Eucken formula, Eq. 9.3-15, to estimate the thermal conduc-
tivity k° at low pressure and 127 F, where Cp = 37.119 J/g-mol-K according to the
heat capacity polynomial given for methane in Reid, Prausnitz and Poling (1987):

1171 x 1077

K° = (37.119 + 1.25 x 8.31451) ———

— 0.0347 W/m-K
= 0.0200 Btu/hr-ft-F

= 0.000347 W/cm-K

Finally, we multiply £° by the ratio of &, at 110.4 atm to the asymptote k, =
0.52 at p, = 0 in Fig. 9.2-1. The resulting predicted k at (110.4 atm, 127 F) is

k = 0.0200 x 0.77/0.52 = 0.0297 Btu/hr-ft-F

and is just 1% above the measured value. This is unusually good agreement.
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9A.4 Prediction of the thermal conductivity of a gas mixture.

The data for this problem are as follows:

Component M px10°, Pa-s k, W/m-K Mole fraction
1(Hz) 2.016 0.8944 0.1789 0.80
2(CO,) 44.01 1.506 0.01661 0.20

Insertion of these data into Eq. 1.4-16 gives the dimensionless coefficients

@11 = @22 =1.0

8, = L (1 2006\ '1+ 0.8944\/? /44.01\"/*]
2T R 44.01 1.506 2.016

= 2.457

B = L (14 B0\ 1506\ 12,016\ Y
2T BT 2016 0.8944 44.01

= 0.1819

Substitution of these results into Eq. 9.3-17 gives

b 0.8 x 0.1789 N 0.2 x 0.01661
T 0.8%x1.040.2x2.457 ' 0.8x0.18194+0.2 x 1.0
=0.1204 W/mK



9A.5 Estimation of the thermal conductivity of a pure liquid.

We first calculate the derivative (Op/0p)T required for Eq. 9.3-4:

(p/0p)r = ™/ [p~"(0p/0p)r] "
= (1/0.9938)[38 x 107%]™! = 2.648 x 10* megabar cm?/g
= 2.648 x 10'° cm?/s? |

Inserting this result into Eq. 9.3-4 and setting C, = Cy, we obtain

v, = 1/2.648 x 101° = 1.627 x 10° cm/s

Equation 9.4-3 then gives the following estimate of the thermal conductivity:

k = 2.80(Np/M)**kv,

02214 x 1023 x 0. 2/3
_2.80 | %92 Xléom x 09938 1.38066 x 10~1° x 1.627 x 10°
= 6.50 x 10* g cm/s*-K
= 0.650 W/m-K

= 0.375 Btu/hr-ft-F

oA



9A.6 Calculation of the Lorenz number.

a. When k and e in Eq. 9A.6-1 are expressed in terms of the gas constant R
and Faraday constant F', the Lorenz number takes the form

L= (BY
3 \F

Insertion of numerical values for R and F from Appendix E gives

;™ (8:31451\F
3 \96485.3

= 2.44 x 107® volt? /K2

b. Insertion of the result just found, and the given k. and T, into Eq. 9.5-1 gives
the thermal conductivity estimate

k =Lk T

_2.44 x 10~ %volt? /K? x 293.15K
B 1.72 x 10~ %ohm-cm
= 4.16 volt?/K-ohm-cm

=416 W/m-K

for copper at 20°C.
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9A.7. Corroboration of the Wiedemann-Franz-Lorenz Law.

Conversion of the tabulated data into SI units and insertion into Eq. 9.5-1 gives the
following results at T=293.15K:

Metal 1/ke, ohm'm  k, W/m-K Lorenz number, L = k/k.T, volt? /K?
Na 4.6x10* 133 2.1x1078
Ni 6.9x10* 59 1.4x1078
Cu 1.69x10* 385 2.2x1078
Al 2.62x10% 209 1.9x1078

The approximate agreement of L for these metals illustrates the Wiedemann-Franz-
Lorenz law.
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9A.8 Thermal conductivity and Prandtl number of a polyatomic gas.

a. To calculate k for a polyatomic gas at moderate pressure we use Eq. 9.3-15,
k= (Cp+1.25R/M)p = (Cp + 1.25R)u/M
along with the viscosity expression in Eq. 1.4-18:

vVMT
o2Q,

p = 2.6693 x 107°

From Table E.1 we find, for CHy, the values M = 16.04, 0 = 3.780, ¢/x = 154K,
and from Table E.2 at kT/e = 1500/154 = 9.740 we find 2, = 0.8280. Equation
1.4-18 then gives the predicted viscosity

V/16.04 x 1500
(3.780)% x 0.8280

= 3500 x 1077 g/cm-s

p = 2.6693 x 107°

and Eq. 9.315 gives the predicted k value

k= (20.71 + 1.25 x 1.987) x 3500 x 1077 /16.04
=5.06 x 107* cal/cm-s-K
=2.12 W/m-K

b. The predicted Prandtl number according to Eq. 9.3-16 is

_ 20.71
T 20.71 + 1.25 x 1.987

Pr

= 0.89, dimensionless



9A.9 Thermal conductivity of gaseous chlorine.

For Cl,, Table E.1 gives M = 70.91, 0 = 4.115A and ¢/ = 357K. Equation
1:4-14 then gives

p=2.6693 x 107°

vMT

o%Q,

= 1.34274 x 107V T

with p[=]g/cm-s and T[=]K, and Eq. 9.3-15 gives k = (Cp + 1.25R)u/M. The
calculated results follow, with u, C}, and k in the units of the problem statement:

T, K
198
275
276
276
363
363
395
453
453
495
553
583
583
676
676

T/357
0.5546
0.7703
0.7731
0.7731
1.017
1.017
1.106
1.269
1.269
1.3866
1.549
1.633
1.633
1.884
1.884

Q

2.0915
1.8217
1.8239
1.8239
1.5799
1.5799
1.5138
1.4172
1.4172
1.3609
1.2974
1.2694
1.2694
1.1994
1.1994

10%u

0.8931
1.2044
1.2091
1.2091
1.6008
1.6008
1.7427
1.9935
1.9935
2.1701
2.406

2.5249
2.5249
2.8775
2.8775

(Cp+1.25R)  10%kprea

10.54
10.59
10.59
10.59
10.81
10.81
10.91
11.02
11.02
11.095
11.17
11.2
11.2
11.32
11.32

1.33
1.80
1.81
1.81
2.44
2.44
2.68
3.10
3.10
3.40
3.79
3.99
3.99
4.59
4.59

Ave.=

kobs/ kpred

0.985
1.056
1.066
1.061
1.074
1.070
1.13
1.14
1.10
1.09
1.09
1.11
1.12
1.10
1.07

1.084

The predicted k values exceed the observed values by an average of 8.4% in this
temperature range.



9A.10 Thermal conductivity of chlorine-air mixtures.

Numbering chlorine and air as components 1 and 2, respectively, and inserting
their given properties into Eq. 1.4-16, we obtain the following coeflicients for Eq.
9.3-17:

@, =1; ®g =1;

2
g, = L (1, 09NN J135T (280T\ VT

TR 28.97 1.854 \ 70.91 T :

2
1 28.97\ /2 1.854 (70.91\/*

By = — 1+ 14/ (== =181

2 \/§< + 70.91) [ TV 135 (28.97) 8105
Equation 9.3-17 gives, for binary mixtures:

z1k1 fb‘zkz
z1P11 +22P12 932‘1’21 + 22P92

kmix =

Insertion of the coefficients and compositions for this problem gives

At Ty = 025,

0.25 x 0.0896 0.75 x 0.02614
kmix = = V. -S-
X = 0251 0.75 x 053809 T 0.25 x 1.8105 1. 0.75 _ 00906 cal/em-sK
At r = 05,
0.5 x 0.0896 0.5 x 0.02614
k M = - . . .K
mix = 0= 05 % 0.53809 T 0.5 x 1.8105 3 0.5 — 0-0675 cal/cm:s
At Ty = 075,
0.75 % 0. . 02614
Fmix = 5x 00896 _ | _ 025 x0.02012 1500 cal/emsK

0.75 4 0.25 x 0.53899 ~ 0.75 x 1.8105 4 0.25



9A.11 Thermal conductivity of quartz sand.
a. For spheres (g1 = g2 = g5 = 1/3), Eq. 9A.11-2 reduces to
a; =3/(2+ kj/ko)
The resulting «; values from Eq. 9A.11-2 for the water-saturated sand are

3 3 3
= =1, = ———— = (.183; =
2+ (ko /ko) M= 9 (ke /o) 2= 5 ¥ (ko /ko)

and Eq. 9A.11-1 then gives

(& 1)]

= 0.433

_ (1)(0.427)(0.00142) + (0.183)(0.510)(0.0204) + (0.433)(0-063)(0.0070)

ket (1)(0.427) + (0.183)(0.510) + (0.433)(0.063)

which predicts ke = 6.3 X 1073 cal/cm-s-K, vs. 6.2 x 10~3 observed.

For the same sand when completely dry (ki/ko = 332, k2/ke = 114), Eq.
9A-11-2 for spheres gives

3 . 3 3

= 000898 ap= = 0.0.02
M= 9332 0898; a2 = 57 qyg = 000259

(874] 2+1 3

and Eq. 9A.11-1 with de Vries’ correction factor of 1.25 for dry sand gives

ker _ (1)(0.427)(0.0000615) + 0.00898)(0.510)(0.0204) + (0.0259)(0.063)(0.0070)
1.25 (1)(0.427) + (0.00898)(0.510) + (0.0259)(0.063)

predicting ke = 0.38 x 107% cal/cm-s'K, vs. 0.58 x 10™* observed.

For the same sand when water-saturated at 20°C, de Vries’ recommended g;
values give

L 2 + . 1.000
ap = — = 1.
° T 3 |1+0.125[(1.42/1.42) — 1] © 1+ 0.750[(1.42/1.42) — 1]
1] 2 1
_1 | = 0.280
* =3 |15 0.125](204/1.42) — 1] T 1+ 0.750[(20.4/1.42) — 1]}
1] 2 1
_1 = 0.532
* = 3| T70.125[(7.0/1.42) —1] | 1+ 0.750[(7.0/1.42) — 1]} 0

and Eq. 9A.11-1 gives

__ (1)(0-427)(0.00142) + (0.280)(0.510)(0.0204) + (0.532)(0.063)(0.0070)

kest (1)(0.427) + (0.280)(0.510) + (0.532)(0.063)

predicting kesr = 6.2 x 1073 cal/cm-s-K, in still better agreement with the observed
value 6.2 x 1073,
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For the same sand when completely dry (ki/ko = 332, k2/ko = 114), Eq.
9A-11-2 with de Vries’ recommended g; values gives

1 2 1
_1 — 1.000
=3 |T501251 -1 T 1075001 = 1]]
1] 2 1
= - = 0.0171
=3 |770125332-1] | 1+0.750[332 1]]
1] 2 1
_ 2 = 0.0048
* =3 |T70125[114—1] T 14 0.750[114 = 1]]

and Eq. 9A.11-1 with de Vries’ correction factor for dry sand gives

ket (1)(0.477)(0.00006) + (0.0171)(0.510)(0.0204) + (0.0048)(0.063)(0.0070)
1.25 (1)(0.477) + (0.0171)(0.510) + (0.0048)(0.063)

predicting ke = 0.54 x 1073 cal/cm-s-K, vs. 0.58 x 1073 observed.
(b) Equation 9.6-1 gives

ke
14 5

ko k1 + 2k 5
ky — ko
Insertion of ¢ = 0.573 and k; = 0.0189 cal/cm-s-K for the solids gives, for the
water-saturated sand,

ke _ 3(0.573)
ko (0.0189 + (2)(0.00142)) 0573

= 3.563

0.0189 — 0.00142

predicting keg = 5.1 X 1072 cal/cm-s-K, vs. 6.2 x 10~ observed. This is not as good
as the prediction in (a) from Eq. 9A.6-11 with de Vries’ g; values.

For the completely dry sand, insertion of the k value for air as kg into Eq. 9.6-1

gives
Foi © 3(0.573)
—_— =1 = a.
ko ' [0.0189 +2(0.0000615)Y _ 0573 4935
0.0189 — 0.0000615 '

predicting ke = 0.30 x 10~3 cal/cm-s-K, vs. 0.58 x 10~3 observed. The result in
(a), from Eq. 9A.6-11 with de Vries’ g;, is better.

Predictions of k.g are more difficult for dry sand than for water-saturated sand.
An oblate-spheroidal model gives little advantage according to the present data.
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9A.12 Calculation of molecular diameters from transport properties.

a. Equation 1.4-9 and the viscosity value from Problem 9A.2 yleld the following
molecular diameter calculation for Argon in cgs units:

1/4
d=/2/3u (A,{KT>
N3

=1/2/3/(2.278 x 10~%) (
=2.95x%x10"% cm

39.948 x 1.38066 x 10716 x 300 */*
6.02214 x 1023 x 73

b. Equation 9..3-12 and the &k value from Problem 9.A.2 give the followmg
molecular diameter calculation for Argon in cgs units:

d—\/I k3TN e
" VEN\ M

B \/ 1 (138066 X 1071%)° x 300 x 6.02214 x 10° 1
0.01784 x 10° 73 x 39.948
=1.86 x 107° cm

‘c. Equation 1.4-14, Tables E.1 and E.2 and the viscosity from Problem 9A.2
give for Argon in cgs units,

s (MKT)1/4
16182, Nw

_ \/ 5 39.948 x 1.38066 x 1071 x 300\ /*
V16 x 2.278 x 10~* x 1.1000 6.02214 x 10%% x 7
=3.415x 107 cm

Equation 9.3-15, Tables E.1 and E.2 and the k value from Problem 9A.2 give for
Argon in cgs units,

L [ [x°TN i
TV 64k \ M

_ \/ 75 ((1.38066 x 10~16)3 x 300 x 6.02214 x 1023)1/4

64 x 1784 x 1.100 7 x 39.948
=3.409 x 10~% ecm

d. The excellent agreement between the results for o, and the poor agreement for
d, show that the data are represented much better by the Chapman-Enskog theory
than by the simple hard-sphere kinetic theory.
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9C.1 Enskog theory for dense gases
a. Equation 9C.1-4 can be written with pressure and
temperature as the independent variables, thus:

7 (aV/aT)p

R{ (ov/o)

T
We may now use V = ZRT/p and rewrite the derivatives appearing
above as

( oV R( P ) R( (az)) RZ( (amz)
| == =ZT| == Z+T| = | |===|1+| =—=
or) ~plar™ ), " p ar),| p JInT),

p
(V) _{82Z) _ RT(, (d9z))|_ RTZ(, (9dmnZ
ap)T—RT(aPP)T_ PZ(Z P(ap)TJ- p* (1 ((ﬂnpl)

When these expressions are substituted into the expression for y, we
get

1+(9InZ/dInT), 1+(9InZ/dInT,)
y=2 1~(a1n2/alnp)T}1 or y=~2 1-(9InZz/aInp, ), -1

b. First one would differentiate the Hougen-Watson Z chart
to get the derivatives appearing in the result in (4) and hence
y(p,,T,). Then for a given reduced temperature and pressure, one
would calculate the right sides of Egs. 9C.1-1 and 2; call these
quantities f,(p,,T,) and f,(p,,T,)- Then

L: U .fk(prlTr)
Ko fulpnT,)

One can then read off values of u from the Uyehara-Watson chart

and construct a chart for the thermal conductivity. This procedure is
not recommended for polyatomic gases.



10A.1 Heat loss from an insulated pipe.

We use the notation of Fig. 10.6-2. When the temperatures at the inner and
outer surfaces are known, Eq. 10.6-29 can be reduced to

_LQ_P_ _ 271"L(T0 - Tg)
L - In(ry /7o) In(rz/r1) In(rsg/r2)
[ klo1 =+ k21£ =+ k323 : ]

The r; for this problem are:

ro = 2.067/2 = 1.0335 in

rp = 1.0335+0.154 =1.19 in
ro =1.1942=3.19

r3 =3.194+2=15.19

Insertion of numerical values into the above formula gives:

Qo 27(250 — 90 F)

" [m(1.19/1.0335) | In(3.19/1.19) , In(5.19/3.19
L [( 9/1.0335)  In(3.19/119) , In(5.13% )F.hr.ft/Btu]

_ 3207
~0.0054 + 24.7+ 16.2

= 24 Btu/hr per foot of pipe



10A.2 Heat loss from a rectangular fin.
From Eq. 10.7-14 we obtain the heat loss expression
Q =2WLh(Ty —T,) -7
in which 7 is given by Eq. 10.7-16:

tanh N i hL?
=5 with N = 5

For the conditions of this problem,

hL? (120 Btu/hr-ft2-F)(0.2 ft)?
_ — = /12 = 3.4641
N=V%B \/ (60 Btu/hr - F)(0.08/12 ft) ¥ 12 = 348

and

n = tanh(3.4641)/3.4641 = 0.2881
The foregoing heat loss expression then gives:
Q=2WLh(To — T,) - n

= 2(1.0 £6)(0.2 £t)(120 Btu/hr-ft-F)(500 — 350 F)(0.2881)
= 2074 Btu/hr
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 10A.3 Maximum temperature in a lubricant.

The parallel-plate approximation in §10.4 is used here to estimate the temper-
ature rise; more accurate results will be presented in Chapter 11. Multiplication of
Eq. 10.4-9 by (T} — Tp), and setting Tj = Ty, gives the temperature profile

1 pv?
T-T= §—k—b($/b)[1 — (z/b)]

The maximum temperature occurs at z = b/2; hence, with vy = QR,

1 pvi 1 uQ?R?

"8k 8 &k

~1(0.923 g/cm-s)(7908 x 27 /60 radians/s)?(5.06 cm)?
~ 8 (0.0055 cal/s-cm-C)(4.1840 x 107 g-cm?/s?/cal)
=88C=16F

Tmax - TO

Thus, the maximum temperature in the oil is Tyax = 158 4+ 16 = 174°F.
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10A.4 Current-carrying capacity of a wire.

Consider a straight cylindrical wire of radius r, = 0.040 in, tightly covered
with plastic insulation of outer radius r3 = 0.12/2 = 0.06 in. Since the heat gener-
ated by electrical dissipation in the wire must flow radially outward, the maximum
temperature in the plastic will occur at the wire-plastic interface r = r2. The rate
of heat loss from the wire reaches its largest permitted value when T' = 200°F at
r = ry while the ambient temperature Ty is 100°F. From Eq. 10.6-29 we calculate
this rate as

Qmax
L

= 27(Thmax — Ts)/ [ln(rs/rz) 1 ]

r3 h3
1n(0.060/0.020) 1
+
0.20 (0.060/12)(1.5)
= 2007/ [5.5 + 133] = 4.54 Btu/hr-ft
= 0.0436 watt/cm

= 27(200 — 100 F)/ [ hr-ft-F/Btu|

Next, we equate this rate of heat loss to the electrical energy dissipation:

Qmax/L - ixznaxRe/L
in which

R./L = (ﬂ'rgk )~ 1 = wire resistance R, per unit length
= (7(0.02 x 2.54 cm)*(5.1 x 10° ohm~lem™1)) ™
=242 x107* ohm/cm

tmax = maximum permitted current

The current-carrying capacity of the wire is then

imax = V/(Qmax/L)/(Re/L)
= 1/(0.0435 watts/cm)/(2.42 x 10~ ohm/cm)

= 13.4 amperes
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10A.5 Free convection velocity.

a. The solution for v, in Eq. 10.9-15 has the form

(PgBAT)B*

v,=A [u3 — u] in which 4 = o0

and u = (y/B),

and its average over the upward-moving stream is

u=0
(v = A/u [u® —u] du = %

=-1
_ (pgBAT)B?
48
in agreement with Eq. 10.9-16.
b. For the conditions of this problem,

T:—(T1+T2)—60°C—3332K
B=1/T=3x10"2 K.

c. Insertion of known values into Eq. 10.9-16 (with u/p averaged as u(T)/p(T)
= v(T) = 0.1886 cm?/s) then gives:

(980.7 cm/s?)((3 x 10~2 K~1)(80 C)(0.3 cm)?

(v(up)) =
? (48)(0.1886 cm?/s)

= 2.3 cm/s
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10A.6 Insulating power of a wall.

a. Application of Eq. 10.6-9 to the data for the plastic panel gives

go =

(z2 —x1) (0.502/12 ft)
= 14.3 Btu/hr-ft?

b. The thermal resistance of the wall is therefore

_(-T3)  (61-0F)
g  14.3 Btu/hrft?
F
=42
Btu/hr-ft?

R23
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10A.7 Viscous heating in a ball-point pen.

The paralel-plate approximation in §10.4 is used here to estimate the viscous

heating of the fluid; more accurate results will be presented in Chapter 11. Mul-

tiplication of Eq. 10.4-9 by (T — Tp), and setting Ty, = Tp, gives the temperature
profile in the ink,

1 pv?
T—T = 5=5(=/b)1 - (z/b)]

valid when both adjoining surfaces are at temperature Tj.
Atz = b/2 the temperature rise attains its maximum value
1 pov?
T — To)max = =2
T =Tolmax = 57
Insertion of the data for this problem gives
1(10* x 0.01g/cm-s)(100 x 2.54/60 cm/s)?

T - T max —
(T-T) 8 (5 x 104 x 4.1840 x 107 g-em/s*K)
=0.011 K

as the maximum dissipative temperature rise in the ink. Thus, the warming of the

ink by viscous dissipation will be negligible compared with the warming of the pen -

by contact with the hand of the user.
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10A.8 Temperature rise in an electrical wire.

The maximum temperature in the wire occurs at the centerline. Equation
10.2-23 gives this value as

SeR? + SeR
4k 2h

¢ I _(kE 1 (E%.
ke \L ke \ L?
The Wiedemann-Franz-Lorenz relation of Eq. 9.5-1, with the Lorenz constant for
copper, gives

Tmax = Tair +

in which

=223 x 1078 volt? /K2

kT

and k for copper ranges from 384.1 W/m-K at 25°C to 379.9 W/m-K at 100°C.
Assuming the temperature rise to be small, we evaluate the conductivity values at

25°C=298.15K:
k=384.1 W/mK

k
©= (Lorenz constant)(T)
_ (384.1 W/m-K
~ (223 x 108 volt?/K)(298.15 K)
= 5.78 x 10° ohm™'m™1)

k

We can then calculate S, as

E?k,
o= ()
_ (0.6 volt)?*(5.78 x 10° ohm™'m™')

(15 ft x 0.3048 m/ft)2
=9.95 x 10°* W/m?

and the maximum temperature elevation in the wire as

~(9.95 x 10° W/m®)(0.005 m)? = (9.95 x 10° W/m®)(0.005 m)
B 4(384.1 W/m-K) 2([5.7 x 5.6782] W/m?.K)
=16x10"*4+0.77~0.77K

Tmax - Tajr

b. The temperature difference across the wire is 4 orders of magnitude smaller than
that in the surrounding air, as shown by the terms in the last line of the calculation.
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10B.1 Heat conduction from a sphere to a stagnant fluid

a. The heat is being conducted in the r direction only.
Therefore, we select a shell of thickness Ar over which we make the
energy balance:

=0

r+Ar

Arg,4nr*q,| —4n(r+ Ar)’q,

=0 or 47t(r2q,)

- 47r(r2qr)

r+Ar

We now divide by Ar and then take the limit as Ar goes to zero

lim (rzqr ) rAr - (qur )
Ar—0 Ar

T:0

We then use the definition of the first derivative to get

Ly 3 zd_T_)_
dr(r q,)—O and dr(r 5 =0

In the second equation we have inserted Fourier's law of heat
conduction with constant thermal conductivity.
b. Integration of this equation twice with respect to r gives

dT C
rzgr—=C1 and T=——;1—+C2

The boundary conditions then gives C; =-R(T; -T.,), C, =T.,, and

T-T, R

oo

¢. The heat flux at the surface is

— k(TR _Too)
r=R - R

dT

A 1
= -k; = +kR(TR - Too )r_2 = h(TR - Too)

r L‘:R R
r=

so that h=k/R=2k/D and Nu = 2.
d. Bi contains k of the solid; Nu contains k of the fluid.
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10B.2 Viscous heating in slit flow
Equation s 10.4-5 and 10.4-6 are still valid for this problem.
Since at x=b, q, = -k(dT/dx) =0, we get from Eq. 10.4-5:

2 2
(4 0
3] =6 o oo

And from Eq. 10.4-6, we get C, =T,

Then substitution of these expressions for the integration constants
into Eq. 10.4-6 yields

2.2 2

MO ) X HY
T={B) 2| X Fh 7
(k)(b) 2 T Tt

When this is rearranged in dimensionless form we have

()3
wop/k \b) 2\b
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10B.3 Heat conduction in a nuclear fuel rod assembly

The differential equation may be set up following the
procedure in §10.2, by replacing S, by S, in Eq. 10.2-6. Then, when
Fourier's law with constant thermal conductivity is substituted into
the thus modified Eq. 10.2-6, we get

2
d( dTpY _ r
kpdr(r dr)-Sno[Hb(RJ }r

for the heat conduction equation in the fuel rod. In the cladding a
similar equation, without the source term, is appropriate:

d( dT
—k-—lr=£1=0
Cdr(r dr)

The boundary conditions in this problem are

B.C.1: Atr=0, T;isfinite

B.C.2: Atr=R;, T;=T.

B.C.3: Atr=Rp, ~—kg(dT;/dr)=—kc(dT,/dr)
B.C.4:  Atr=R., —kc(dT/dr)=h (Tc-Ty.)

Integrating the above differential equations twice gives

RZ 2

dr 2k;

=3
r

dTF__SnOr(1+ b er“Lgl dT. _C
r dr

S or? b r?
Tp=- 1k, 1+R§74- +CInr+C,; T-.=Cilnr+C,

The constant is zero by B. C. 1, since the temperature is not infinite at
the axis of the fuel rod. From B. C. 3, we can find Cj:

S OR,%( b)
=m0 F 4 2
G 2k, 2
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From B. C. 4, we get C,:

. 2
C”':TL_(Rk(;z +1nRCJC3:TL+(RkCh ’+MRCJS—;%{£(1+§)
C**L C''L C

And finally C, can be obtained from B. C. 2:

2 2
C2:TL+§Q.R.L(1+2)+§&(1+2) ]n_RL_;_lg___

Then we can get the maximum temperature at the axis of the fuel
rod:

2 2 .
TFmax =TL+SnORF (1'{"‘[?') +—SL19'BE—(1+E) lnB—C—+ kC :
: ak, U a) o U2
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10B.4 Heat conduction in an annulus

_ a. The energy balance on a cylindrical shell of thickness Ar
and length L is

2nrLq,| -2n(r+Ar)Lg,| ., =0 or 2zl(rg,) =0

r+Ar

—27nL(rq,)

r+Ar

When this equation is divided by 27L and the limit is taken as Ar goes
to zero, we get

d
E; (rqr ) =
which may be integrated to give

rg,=C, or —k—g—=—c;—

The thermal conductivity varies linearly with temperature, so that

T-T,

k=k0+(k1—k0)(T _TJ ko + (K~ ko)©

Then

Tk + (ks —k)OJEE =S or (T =T, )k + (ko JO) 2 =2

This first-order, separable differential equation may be integrated:

The constants of integration may be found from the boundary
conditions: ©(r;) =0 and O(r;)=1.

0=C;Inry+C, and —(T,-T,)[ks +3(k; —k;)]=C Inr, +C,

When these relations are subtracted, and equation for C, is obtained:
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(T, = To)
]n(rl/ro)

and C, may also be obtained if desired.
The heat flow through the wall may then be obtained:

G == [3(ko +K1)]

_ — _C_l _ (TO _Tl) 1
Q=2nrolq,|,_, = 27er0( - ) = 27:L—————1n(rl/ro)[2 (ko +ky)]

b. Let the ratio of the outer to the inner radius be written as
r/ro =1+ €, where ¢ is very small. Then use the Taylor series for the

logarithm as given in Eq. C.2-3: In(1+¢)=¢e-L1e? +1e’—--. If we
keep just one term of the series, then this corresponds to

E=(r/ry)—1=(r, —1y)/1,
When this is substituted into the expression for Q we get

To “T1

Q=2naLr, [%(ko +k, )]

This is just: area times average thermal conductivity times a
temperature gradient.

|O-14



10B.5 Viscous heat generation in a polymer melt
We can start with a modification of Eq. 10.4-4:

n-1
do
Y4 - C
dx ) 1

Since the velocity gradient is positive in this problem, the absolute
value operation is not needed:

dT dv,\" _
—kE;—mvz( dx) =C,

When the linear velocity profile is inserted, this becomes

dT 0 n+l
k== — hd 2 =
T mx( , ) C;

Integration with respect to x gives

1 v n+l
~kT=Cx+ mez(—bb—) +C,

The constants are then determined by the boundary conditions given
in Egs. 104-7 and 8, and final result is

T-T, =£+1._mbz_(ﬁ)"“ (z)_(z)"‘
T,-T, b 2k(T,-Ty)\ b b) \b

or

=0 4 e, 5(1-5)

which should be compared to the Newtonian result in Eq. 10.4-9.
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10B.6 Insulation thickness for a furnace wall
Let the regions be labeled as follows:

Refractory brick "01"
Insulating brick "12"
Steel "23"

and we may used the formulas given in Egs. 10.6-8, 9, and 10.

The minimum wall thickness will occur when T, =2000°F. If
for the sake of being on the safe side, let T = 2500°F. Then for the
region "01" the thickness must be

9% 5000

X —Xo = =0.39ft

Here we have taken the thermal conductivity of the refractory brick
to be the arithmetic average of the values the thermal conductivity at
2000°F and 2500°F (the latter estimated by linear extrapolation from
the given data).

For the remaining two regions, we may add Egs. 10.6-9 and
10 t get

Xp=X,  X3—X
T.-T =q( 2"% A3 2)
17143 0‘ k, krs

or, taking the steel temperature to be 100,

— 1
2000100 = 5000 2= %1__, (0.2
10.9+18) 261

This gives x, — x; = 0.51ft.
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10B.7 Forced-convection heat transfer in flow beween parallel
plates

a. Since the temperature depends on both x and z, we make
an energy balance over a region of volume WAxAz, in which W is the
dimension of the slit in the y direction. The various contributions to
the energy balance are:

Total energy in at x: e,| WAz
Total energy out at x + Ax: e,|. . WAZ
Total energy in at z: e,|, WAx
Total energy out at z + Az: e, WAx

Work done on fluid by gravity:  pv,g,WAxAz

When these terms are added together and divided by WAxAz, we get

since gravity is acting in the -z direction.
Now we use Egs. 9.8-6 and 9.8-8 to write out the x and z
components of the combined energy flux:

e, =1T,0,+( ——(uavz)v —ka—T
x = Yxz%z x z ax

2 A
eZ = (%pvz )UZ +pHUZ + TZZUZ + qZ

=(4pv2)o, +(p-p° o, +0C, (T -T° o, —(zu 852)02 9T

Z 0z

Sub.stituting these expressions into the energy balance, and making
use of the fact that v, depends only on x gives
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&0 9T _ kazT T, (gv_z)er b, 820_
I s A oz H o T8

The term in the last parentheses is zero by the equation of motion,
the term just before that is the viscous heating (which we neglect),
and in the first parentheses we neglect the heat conduction in the z-
direction.

b. Hence we get

A X JdT o°T 00 070

with the boundary and initial conditions: at o =11, +(98/do)=
and at {=0, © =0.

c. For large z we propose the solution ©(c,{)=C,{ + ¥(0o).
Then ¥(o) has to satisfy the ordinary differential equation

2
L =C(1-0%)

which is easily integrated. The expression for ©(o,{) is then

0(0,8)=Col +Co(30° -5 0* )+ Cio+C,
Application of the boundary conditions at o =11 gives C, =0 and

C, =3. The remaining constant has to be obtained from an integral
condition:

1
¢ =1,0(0,8)(1-0%)do

This gives C, = - zso Combining these results we get
0(0,0)=3¢+3(30° - %0*)-

which is in accordance with Eq. 10B.7-4.
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10B.9 Plug flow with forced-convection heat transfer
a. We can adapt the solution in §10.8, by replacing v, ... by

v,, and omitting the factor [1-(r/R)*] in Eq. 10.8-12. Then we can
give the results corresponding to those in §10.8 as follows:

(10.8-25) £ = [ 0, L)EdE
1d(, d¥)_
(10.8-26) EE(%E) =Co
(10.8-27) O(£,8)=Col +1CyE* +CIné+C,
(10.8-28, 29, 30) C,=0; C=2; C,=-}%

With these coefficients, Eq. 10B.9-1 follows.
b. The solution of Problem 10B.7 can be adapted by replacing

U, max PY Uy, and omitting the factor [1-(x/B)*] in the energy
equation. The results, analogous to those in part (a) are

(10.8-25) ¢ =,0(0,{)odo

(10.8-26) ‘;:f -G,

(10.8-27) 0(0,8)=Col+1Cy0* +Ci0+C,
(10.8-28, 29, 30) C,=0; C,=1; C,=-1

With these coefficients, one obtains Eq. 10B.9-2.
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10B.10 Free convection in an annulus of finite height
a. The appropriate simplification of the energy equation is

which has the solution T=C,Inr+C,. When the constants are
evaluated using the boundary conditions we get Eq. 10B.10-1.

b. We make use of the linear approximation for the density as
a function of temperature:

P=pP _pl.Bl(T—Tl)

This leads to the equation of motion

_pldf dv) (dp _
O_urdr(r dr) (dZ+P18)+Plgﬁ1(T T,)

Subtsitution of the expression for the temperature distribution from

Eq. 10B.10-1 into the equation of motion, and multiplication by R*/u
gives | |

1d(,dv,)_R(dp P16y (T, =T, )R?
§d§(§ dé)_ u(df‘“){ ulnk }h‘é

which is just Eq. 10B.10-2, along with the definitions of A and B.
¢. Integration of Eq. 10B.10.2 then yields

v, =3AL%+1B(S’InE - &%)+ CIng+ G,
The constants of integration are

_(A-B)(1-«*)-Bx’Ink
B 4Inx

C,=-1(A-B) and C,

The velocity distribution can then be written as
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40, =(B—A)[(1—<;=2)—(1—;<2)—11§§(-]+13(§2 - )né ()

This can easily be shown to satisfy the boundary conditions for the
velocity at the inner and outer walls of the annular region.

It remains to evaluate the constant A (as we did in §10.9) by
equating the total mass flow through a cross-section to zero:

fj”IfR(pvz )rdrd@ =0 or .“,i[pl - plﬂl(T - Tl)]vzédé =0

Thus we have to evaluate A from

Ink
{(B—A)[(l—éz)—(l—Kz)—h}—é]+B(§2 _KZ)lng}gdg=o

ﬁ[“ﬁl(n —TK)E—‘;]-

Ink

First we note that Be<c AT =T, — T, and therefore that A « AT. To be
consistent with the Boussinesq approximation, we should therefore

neglect terms that are proportional to (AT)?. This eliminates the
need for doing many of the integrations in the above equation. When
the necessary integrations are performed we get, after a modest
amount of algebra

O

(B-A)=

When this is substituted into (*) along with the expression for B given
just after Eq. 10B.10-2, we get Eq. 10B.10-3.
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10B.11 Free convection with temperature-dependent viscosity

a. It is instructive and helpful to begin by going back and re-
solving the problem of §9.8 using the notation of the present
problem. Equations 10.9-9 to 11 in dimensionless form are

2v
C;y =P +1Grjy with 0,(x1)=0

This may be integrated to give
5, =C, +C,7 +3Py* + 5 Grip®

When the boundary conditions are applied, we get C; = -3 Gr and
C, =—4P. Thus the velocity distribution is

5, =%Gr(7° - )+ P(7 1)

which is equivalent to Eq. 10.9-12. Next we apply Eq. 10.9-13, which,
in dimensionless form is

[30-brg)[&Ge(7 - 9) + 3 P(7 - )]dg =0

in which b; = 1 BAT; this equation has to be solved for P. In doing the
integrations, the integrals over odd powers of j give zero, and we

get
Gr(-%-%+4-3)br +P(-1-2+4-3)=0 from which P = 5Grb;

When this value for P is substituted into the dimensionless velocity
distribution we get

9, =5 Gr(7 - 7) + & Grbr (7 - 1)

On the right side, the first term contains AT and the second term
contains (AT)?. In §9.8 we chose to neglect the term in (AT)?, which is
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all right if AT is quite small. This led us to the result in Eq. 10.9-17,
which is just the first term in the above equation.

b. Now we address the temperature-dependent viscosity
problem in Problem 10B.11. The equation of motion is then:

A )] -2, g

We now introduce the temperature dependence of the viscosity
(Eq.10B.11-1) and density (Eq. 10.9-6) to get

d

ALT dvz ___C_IE So_—P"oR(T T
dy(1+B‘”(T-T) dy]_dz+pg pgh(T-T)

We now multiply this equation by B*p /i * in order to get the equation
in dimensionless form (usmg quantities defined in Eqgs. 10B.11-2 and
3):

d 1 dg,
P+1 ith 0, (+1)=0
dy(l 6.7 dy) +1Grj with 7, (1)

Integration of this equation gives
9, =C, +Cij+3(P-Cyb, )7 +3(3Gr- P, )7° - £ Grb, i*
Application of the boundary conditions then gives

C,=-%(3Gr-Pb,) and C, =—1P+%Grb, +1Pb]

In (a) we found that P was second order in AT Therefore the dashed
underlined terms in C, and C, can be expected to be of the third and
fourth order respectively--thus two orders of magnitude higher than
the remainder of the terms. Therefore we drop the dashed-
underlined terms at this point.

Then the dimensionless velocity distribution is
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0. =(~3P+35Grb, )~ 5 Gry + 4 (P +;Grb, )77+ Gry ~ % Grb, 7'

Next we deterimine P from the requirement that there be no net mass
movement upward in the region between the plates (i.e., Eq. 10.9-13):

0=2(-4P+4%Grb, )+3b;(%Gr)
+%-%(P +%Grb”)—%br(%§Gr)—

[¢1[¥]

1= Grb

H

When this is solved for P we get
P =;Grb; + £ Grb,

and this is second order in AT as we had anticipated, and the
dropping of the dashed underlined terms is fully justified. When this
expression for P is substituted into the dimensionless velocity
distribution we finally obtain:

8, =4 Gr(7° - §) + & Grby (¥ - 1) - Grb, (¥ - 1)(59° - 1)

The first term is the "basic solution” in Eq, 10.9-17, the second term is
the deviation from the basic solution when terms second order in AT
are accounted for, and the third term is the second order term that
enters in when the temperature dependence of the viscosity is taken
into account. The basic solution contains only odd powers of the
coordinate, whereas the second order terms contain only even
powers. It is clear that this equation satisfies the boundary
conditions.
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10B.12 Heat conduction with temperature-dependent thermal
conductivity

The thermal conductivity is a function of the temperature:

T,-T
TO_Tn

k=ky— (ko — k) =ky — (ko —k, )@
=)

a. Since T is a function of 6 alone, we make a shell energy
balance thus:

%le(rz ~7)L- ‘79|9+A9 (rp—7)L=0
Dividing by (r, —r,)LA6 and taking the limitas A@ — 0 gives

dq,
“o _ ¢
do

Then inserting Fourier's law with a temperature-dependent thermal
conductivity, we get

d 14T d 1d©
I

Integrating once we get

do
(ko — (ko — k4 )@)d—e =C,

- and a second integration gives
ke©® —1(ko —k,)0* =C,0+C,

When the constants are determined from the boundary conditions,
©(0)=0 and ©(7)=1, we get C, =0 and C, =(k,+k,)/27, so that
the temperature distribution in the solid is
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ko® — 3 (ko —k,)©° _6
kot+k,) —m

Then the total heat flow through the surface at 6 =0 is then

Q= ”:( klfl—z) drdz
rn(1d0O
ff’l(rde) drdz
Ler 1 5(ky + K
=ko(To-T,) H‘rl r(——(—nz——))drdz

( ) k +k (TO;Tn)
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10B.13 Flow reactor with exponentially temperature-dependent
source

For this problem we may take T, to be zero, since there is no
particular need to do otherwise. Then the temperature is made
dimensionless by dividing by the inlet temperature: ©® =T/T,. Also,
the quantity S,; may be identified with K of Eq. 10B.13-1. Therefore
the quantity S,F(®) in Eq. 10.5-7 becomes

5.F(@)=K eXp(—%) =K exp(—%) where A= _I;TT
1

We may then proceed to Egs. 10.b-21 to 23:

Zonel: O'=TYT,=1 or T'=T,

Zone II: Js,n 7 (1 )d@ I exp( A)d@

To do the integral we make a change of variables

A/© =x so that d© = -Ax 2dx. Then the integral
becomes

L, 1A/et

o
~Af et =sal] Al exlix=NZ

1

This last integral can be written as a power series. We

then get:
' Alel
Aexp(A/0")- Ae- A[lnx + nzln|n] =NZ or
Ale" In(A/0")+ 2( A/e") Nz
exp( ) 2_+ = nln A
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for O as a function of Z. However it is easier to

calculate Z as a function of ®, since that does not in-
volve any trial and error.

Zonelll: O =" -

Another way to treat Zone II:

If the temperature rise is not too great, we may expand e*x
in a power series about x = 1:

e =ell-(x =D+ H(x-1 - Hr-1) + -1+

Then

—-A_[IA/GH e*x 2dx = —AejA/eH [1 ~(1-x)+2(1-x)*- .]dx

1

(a/emt)-1
=—Aejo [1—y+%y2-~-]dy
2 3
=—_Ae (iﬂ__l)_l(%_l) +_3_(in_1) +---|=NZ
S 2\ 0 2\ 0®

for ®" as a function of Z. Also, by this method it is easier to calculate
Z as a function of ®", since that does not involve any trial and error.
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10B.14 Evaporation loss from an oxygen tank
a. The fact that the thermal conductivity varies linearly with
temperature can be written as

k-k, T-T,

=0

which also serves to define the dimensionless. temperature. From an
energy balance on a solid spherical shell of thickness Ar gives

=0

(47rr2qr) (4717 q,)

r+Ar

Division by Ar and then taking the limit as Ar goes to zero gives

d

dr (r qr) =0

Then, introduction of Fourier's law gives

d daT d doe
r’k— ’k

dr( dr ) 0 ot dr( dr )

We now integrate once with respect to r to get -

doe d® C
r’k—=C — ==
dr 1} | ot dr 2

Inserting the expression for the thermal conductivity as a function of
temperature, and integrating again, we find

C
[[ko +(k, —ko)O]dE® = —71+c2
or

ki® + 3k —ko)0? =L +C,
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Now we apply the boundary conditions:

C

Ty
. 1 G
B. C. at ry: $(ky +ky)=—=2+C,
, r,

Subtracting the first equation from the second eliminates C, (which
we are not going to need anyway) and gives an equation for C;: -

1(k, +k0)=c1(i—l)

o h

or

_ %(kl + Kk )ro”l

. (7’1 - rO)

The heat flow inward through the spherical shell at r, is now

aTr

doe
= 4mr?| +k—
Qo °(+ dr)

=4m§(+kO(T1 —To)—-d-r—)

r=rg r=rg

The derivative of the dimensionless temperature can be found thus:

de
O dr

1
-k @ -1tk 1

k dr (r,—1) r?

Evaluating this expression at r = r;, gives

do _ ‘lz'(kl +ky )7'1
dr |-y, (7’1 - ro)ro

Putting this expression into the formula for Q, gives
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Qo =4m§(+kgdz)

r

_ 477:r0r1(k° +k1)[T1 —To)
r=r, 2 ry =Ty
0

b Since most of the quantities are given in the c.g.s. system,
we will convert all quantities into that system. The quantity Q, may
be evaluated thus:

(16.2x107*)(4.136 x107°) ( 183 )
2 12x2.54

Q, = 47(36 x 2.54)(48 x 2.54)(

= 2.8182 cal/s

The factor 4.136 x10™° needed for converting the units of the thermal
conductivity is obtained from Table F.3-5. The rate of evaporation of
oxygen is then:

_ ( 2.8182

3600) = 6.201 g-ml/hr
1636)( )=6.201 gml/

or

_(6.201)(32)

R
1000

=0.198 kg/hr
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10B.15 Radial temperature gradients in an annular chemical reactor

a. Consider a cylindrical shell of thickness Ar and length L.
We make an energy balance over this shell, by paralleling the
derivation in Egs. 10.2-2 to 6, replacing the electrical heat source by
the chemical heat source S,. Hence we have (cf. Eq. 10.2-6):

d
a;(rq,) =S.r

Into this we substitute Fourier's law for heat conduction in the r-
direction to get

d ar 1d( dT
— -—k — ot — e — ] = -
dr(r( ot gy D S or Kei r dr(r dr) S

provided that the effective thermal conductivity does not vary with
position. The boundary conditions are:

B.C. 1: atr=r,, T=T,
dTr

B.C. 2: tr=r,, —=0
2 0 dr

b. A natural choice for the dimensionless radial coordinate
involves division of r by either the inner or outer radius; we choose
the inner radius and write £ =r/r,. Then the differential equation
becomes:

k 1d(,dT)_ kg 1d(,d(T-Ty))
G 7?‘@»:(5 I ) SC

From this, it is evident that k(T -T,)/S.r§ is dimensionless. By

inserting a factor of 4, we get © = 4k (T - T,)/S.r5 . The insertion of
the factor of 4 is arbitrary, but it makes the final dimensionless
answer somewhat simpler. In terms of these dimensionless
quantities the partial differential equation becomes:
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1d(,.d8)
'5&(4‘35)“ *

with boundary conditions

B.C.1: até=1, ©=0
B.C.22 até=1, dO/d{=0

¢. Integration twice leads to
@=-£2+C,Iné+C,

Application of the boundary conditions gives C; =2 and C, =1, so
that

O=1-£*42Iné¢
d. The dimensionless temperature at the outer wall is then
O(a)=1-a* +2Ina (a=r,/10)

The volume averaged reduced temperature is:

Fla-g+ame)eazan_[367-18 £ 127

<®> = 27 ca a .
Jo [ &dzdo [3¢%],
’Ina
==-1(a? +1)+22
2 (a ) a? -1
e. The temperature at the outer wall is
=T, + 300 (1-4? +21na)
° 4keff
2
(4800 «l 3)(3.97 x1073 B—‘“)(z.54x12 ﬂ)(gﬁ)
4(0.3)
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x(1-(1.11)* +2In(1.11))
=900 +(0.681)(1-1.23 +0.21)
=900 +(63.3)(1~1.23 + 0.21) = 899°F

f. If the inner and outer radii were doubled, the temperature
difference between the walls would be four times as great.
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10B.16 Temperature distribution in a hot-wire anemometer
a. We start by writing a shell balance over a segment Az of
the wire:

4.1, (37D%) - 4.],, . (7D%) + 71(2—(:1; aD?)Az - h(T - T, )aDAz =0

e

Division by 1 #D*Az and taking the limit as Az — 0 gives

i Felens ", 12 4W(T-T))
Az—0 Az k D

(4

=0

Taking the limit and using the definition of the first derivative gives:

_dq, _4h(T—T‘L)___I_2_ .

d°T 4nT-T,) I*
dz D &k

or  +k dz? D Tk

e e

Let us now define the dimensionless quantities

_4hl* [= I*1?
kKT,

e

z

=— H
¢ L T, kD
Now when the differential equation is multiplied by L*/kT, it
becomes, in dimensionless form,

2
%-H@:-} with ®=0at =+l

This is a nonhomogeneous, second-order differential equation, the

solution of which is the sum of a complementary function and a
particular integral:

Oy, =C,coshvH{ +C, sinhvVH(; 0, =J/H

Since the solution must be symmetric about { =0, the constant C,
must be zero. Therefore, the complete solution has the form
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J/H
@ =C, coshVH{ + ;I{— where C, = cosl/1 NIz

where the boundary condition that ® =0 at {=1 has been used.
Therefore the solution to the problem is

®=L(1 cosh\/—_C) T-T, = I°D (1_ coshw/4h/sz]

H coshvH o 4hk,\ cosh/4h/kDL

c. First we evaluate the cosh-function in the denominator,
creating dimensionless ratios with internally consistent units:

4h 4hL
hw/—L S EL hw/
Wi kD

ok \[4(1oo> (0.5)/(2. 54)(12) ( 0.5
(40.2) 0.0127

) cosh2.535 =6. 348

Then, at z = 0, the quantity in the large parentheses is

1
1- =0.842
( cosh/4h/kD L}

Then the volume rate of heat production is

1> _(T-T.)(4h) _ (30)(4)(100x5.678)
k, (0.842)D  (0.842)(0.127 x0.001)
=6.371x10?J/cm®s = 6.371x 10> amp” - ohm/cm?

=6.371x10% J/m?s

since 1 amp - volt =1 amp? ohm =1 J/s. Then

current (amp) = = 6.371x10? x 10° (} 7(0.0127)?)

=/63.71x10° (1.267 x 107*) = 1.01 amp
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10B.17 Non-Newtonian flow with forced-convection heat transfer

a. This problem can be solved by modifying §10.8 as follows:
First replace (1-£2) by (1-£°*') in Egs. 10.8-19, 25, and 26. Then the
power-law analog of Eq. 10.8-27 becomes

52 §s+3
®(§/§)=C0C+C0(Z“ (S+3)2)+C11n§ +GC,

in which the constants of integration are determined to be
¢, =0

Co=2(5+3)/(2+1)

C, =[(s+3%)-8]/4(s+1)(s+3)(s +5)

With these values for the constants, we are led to Eq. 1B.17-1.

b. This problem may be solved by modifying Problem 10B.7,
part (b), by replacing (1- 6%) by (1- 6°"") in the differential equation
for ¥ as well as in the integral condition. This leads to the following
equation for ©(o,({): ' '

0_2 O_s+3

@(a,§)=C0§+CO( 5 —(S+2)(S+3))+Cla+c2

with the constants of integration given as

C,=0

_5+2

' st

_ 5+2 (s+2)(s+3)(2s+5)—6)
2 s+'1( 6(s+3)(s+4)(2s+5)

Then we are led to Eq. 10B.17-2.
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10B.18 Reactor temperature profiles with axial heat flux

a. The differential equations in Eqgs. 10.5-6 to 8, and the
boundary conditions in Egs. 10.5-9 to 14 are still valid, but with a
linear form for the function F:

S.=S, -1 =5.,0
C C Tl_TO c

in which S, and T, are constants describing the linear dependence of
the reaction rate on the temperature. Then, if we use the
dimensionless downstream coordinate Z=z/L, a dimensionless

quantity B = pévaL / ke .. » and a dimensionless chemical heat source

N =Sc1L/ pépvo (T, -T,), the differential equations for the three
regions become:

140" _d0' 14°0" 4de" 14%0"M Je™

- =—; - - + N@II; o —

B dz?* dZ B dz* 4z B dz? az
The boundary conditions are:

B.C.1: at Z =—oo, o' =1

B.C.2: at Z=0, o' ="

B.C3: atZ=0, d®'/dZ =de"/dz

B.C.4: at Z=1, el =M

B.C.5: at Z=1, de"/dz = do™/dz

B.C.6: at Z=o0, O™ = finite

That is, we specify the condition far upstream from the reaction
region, and we require that there be continuity of the temperature
and the heat flux where the regions join.

The solutions of these linear, homogeneous, second-order
differential equations are then

Region I: 0'(Z)=C, +C,eP
Region II: ©"(Z) = Cse™* +Cye™-* for m, #m_
Region III: O™(Z)=Cg + Cse
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where m, =$B(1+/1-(4N/B)).

When the integration constants are determined, we get:

Region I @I( Z)=1+ ( m+2m;l (m+ ‘2";— )) pms+m_)Z
mie™ —mZe™
Region II: 0'(z)= me"e" " —m e e™” (m, +m_)
g . mzem+ _ m—z-em_ + -
2 _ 2
Region III: @HI(Z)_—_( > 7:’”+ m; _ Je(m++m_)
mse™ —mZe™

These results correspond to Egs. 10.5-21 to 23.
b. In preparation for taking the limit for B going to infinity,
we first find the following Taylor series expansions

(4N/B)+...)= B+.N+O(B—1)

m+
m_ (4N/B)+--)=N+0O(B™)

1B(1+(1-
1B(1-(1-

It is important to note that the limiting value of m_ for infinite B is
not zero, but N.

Then, the limiting expressions for the temperature profiles in
the three regions are

lim©'(Z) = lim[l +(m+m_e + m“)e("'**"")z ] =1 (since Z is negative)

B—eo B—seo miem+ —
VA m_ m.Z
_ . [m (m +---)e™e™ m_(m, +--)e"e™
lim®' (Z) = lim +{ * m) _m( * m) =M
B—oo B—yool m+e t —.. m+ +t —..

2
. . m,—---
lim @H (Z) =lim —_2+m— e(”’++m‘) = EN
B—yeo Boee| mMLET —---

These results are consistent with Egs. 10.5-21, 22, and 23. To get the
second equation above from Eq. 10.5-22, we have to substitute
F(®)=0 and integrate.
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10C.1 Heating of an electric wire with temperature-dependent
electrical and thermal conductivity
a. Rewrite Eq. 10C.1-3 as

& [édé[éki%%ﬂ:k[:_(%)]

This is easily transformed into Eq. 10C.1-4, with B =k, R*E? /k,T,L*.
Use of Egs. 10C.1-1 ane 2 leads directly to Eq. 10C.1-5.
b. When Eq. 1C.1-8 is substituted into Eq. 1C.1-5 we get

4 [1—al{%B(l—fz)(l+B®l+---)}

d
_az{%3(1 £2 )(1+B® 4. )} +-]E d'g'(l B(l E2 )(1+B®1+...)))
= B(1-B,{4B(1- £2)(1+ BO, +-)}
—/32{%3(1 —£2)(1+BO, +- -)}2+- : )

Equating terms containing B', we get

1d d
‘E%( gz tB1-¢ ))

which, when the differentiations are performed, gives an identity,

B =B, as it should. Then we equate the terms containing B?, which
gives

1d[, d 1d .
E é[ qgiB(1-¢7)pe ]"Ed&[ o 1BE g5 1B(1-¢ )}
=-p:B-$B(1- &)

Division by 1B” and performing the differentiation in the @; term
then gives the differential equation for ©,
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Sl

Performing two integrations then gives
(1-£%)0, =% (282 - £*)+ £ B,(4E* - £*)+ CiIn £+ G,
The constant C; must be zero in order to satisfy the boundary

condition at the tube axis, and the application of the boundary
condition at the tube wall gives

-1 3

Taking the difference between the last two equations gives (after
dividing through by (1- £))

®1=%a1(1—§) 16 1(3 5)

in agreement with Eq. 10C.1-9.
c. Rearranging Eq. 10.C-10 we have

k k T k
—=—t—=—t(1+0
kO keO TO keO( )

Into this equation we substitute Egs. 10C.1-1 and 2, to get

(1- 0,0 - 0,0% ) =(1- B0 - B,0°—--)(1+©)
=1-4,0-5,0"—-+0-p,0 - §,0° -
_(ﬁl _1)6_(ﬁ2 ".31)@2_“'

Equating the coefficients of equal powers of ©then gives a; =f; -1
o, =B, - B,, and so on. Then Eq. 10C.1-12 follows directly:

©=1B (1 & ){ %B[(ﬁ1+2)+(ﬂ1—2)§2]+---}

7
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10C.2 Viscous heating with temperature-dependent viscosity and
thermal conductivity
a. The shell momentum and energy balances lead to

d( dov d( dT dv. )
—_ Z =0 d k— |+ 1 =0
dx(“ dx) an dx( dx) (dx)

Mulitply the first equation by b*/u,v, and the second by b*/u,v; to
get Egs. 10C.2-3 and 4.

b. When Egs. 10C.2-5, 6, 7, and 8 are used in the equation for
temperature, and the coefficients of like powers of Br are equated,
we get for the terms containing the first power of Br

d*e,

d§2 +CH =0

This equation has the solution ©,=-1C;E*+C,E+C,. The
constants of integration are determined from the boundary
conditions that ©; =0 at £=0,1. Thus the following result is
obtained:

 =3Ch(£-&7)

We now turn to the ¢ equation (along with Eq. 10C.2-2) which is

%g=c1(1+ﬁ1@+ﬁ2®2+---)

The expansions in Egs. 10C.2-6, 7, and 8 then give

d
é (¢O +Brg; + ) (CIO + BrCll + Br2C12 +-- )

(1+8,(Bro, + Br262+---)+~-)

Equating the coefficients of the zeroth power of Br, we get
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d
EE% =Cy

Integration then gives ¢,=C,,é+C,. The boundary conditions
$0(0)=0and ¢,(1)=1lead to

¢, =& - and hence also ®1=%(§—§2)

These are just the results obtained in §10.4.
We next go back to the energy equation and equate the terms

containing Br?:

d de, do
EE(“l@)l Eé + —CEZ—) +2Cy; + 6,0, =0
Into this we insert the expression for ©, to obtain
d’e, __a 2 1 2
d§2——3;@—6é+65)—2cu—5ﬁ45—§)

Integration twice gives
o (1 1 1,(1 1
0, = ‘j(zéz -&° +‘2‘§4) -C, & ”“2‘ﬁ1(g§3 “1—2‘54) +C36+Cy
Then we use the boundary conditions ©, =0 at £ =0,1 leads to
_ o1y e 1.4 1 3_ g4 2
0, =~ L2820+ 28t |- B (- 428 -8+ C - 27)

The velocity distribution that goes along with this approximation is
¢,. Equating the terms linear in Br gives the differential equation

%zcu +6,0, =Cy +%:31(§_52)

Integration gives
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10C.3 Viscous heating in a cone-and-plate viscometer
a. First we make a table of "translation” to get from the
plane Couette flow to the cone-and-plate flow:

Plane Couette Flow Cone-and-Plate Flow
(Fig. 10.4-2) (Fig. 2B.11)
c=x/b E=v/y,
6=0,/0, 5 =0, /12
v, /b Qly,
Br = uv? /k,T, Br(r/R)" = (uR?Q? [k, T, )(r/R)2

The torque on the cone-and-plate viscometer is given by the force
times the lever arm integrated over the entire plate:

T, = Zn.[: rgq,’e:”/z .r-rdr

But

. =_“sinea % .. 107,
% r d6\sinf 'uréhlf

is a suitable approximation for the cone-plate system, with 6 = 7/2.

Therefore the torque expression becomes for a fluid at temperature
T, and viscosity u,

dv

R
T,= Zﬂfo yoa—l; rdr ("

y=0

When there is no viscous heating, the tangential velocity is
v, =¥/ Vo)

Combining the last two equations gives, for no viscous heating;:
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_ 2mu,QR?

z.0 3 l//o

(**)
When (*) is divided by (**), we get

T, _3 134)]

T,, 00|,

£%d¢

b. We now consider the system with viscous heating and use
the cone-and-plate variables in the correspondence table. This gives

e =3[} (1-4BeE 26+ 2dE
2.0

where we have used the dimensionless velocity expression from part
(c in Problem 10C.2.

When the integration is performed we get

;;fo =1-4B1p, +O(B’)

To get the higher-order terms shown in Eq. 10C.3-1, one would have
to go back and get the higher order terms in part (¢ in Problem 10C.2.
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10D.1 Heat loss from a circular fin
a. A heat balance over a ring of thickness Ar gives

(Zn(ZB)rq, )Ir - (27[(23)1‘(], )

=2-2arAr-W(T-T,)=0

r+A

Divide by 27(2B)Ar and take the limit as Ar goes to zero to get

lim(rqr)’_(rqr)r”f _Lh_(T—Ta)zo or
r—0 Ar B

from which we get the differential equation

d rh d( dT rh
dr(rq’) B( “) 0 of dr(r dr) Bk( T“) 0

In the second form, Fourier's law has been introduced. Next we
rewrite the equation in terms of dimensionless variables: £ =7/R,
and ©=(T-T,)/(T,-T,):

1d(,.dO®) (hR]),
saelsi) oo

This equation has the following solution (with 82 = hR3 /Bk):

O(&) = C,1,(BE) + C, K, (BE)

in which I, and K|, are zero-order Bessel functions. The constants
are determined by use of the boundary conditions: ©(1)=1 and
d@/dﬂngI/R0 = 0. This leads to

1=CI,(B)+CKo(B) and 0= CuBIl(ﬁRl/Ro)‘ CZBKl(ﬂRl/RO)

These two equations can be solved simultaneously to give

BK,(BR,/R,)

= 1, (BYBK; (BRy/Ry )+ BLs (B Rs /Ry Ko ()
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o BL(BR,/R,)
7 1o(B)BK (BR, /Ry )+ BL,(BR;/Ry)Ko(B)

Hence the dimensionless temperature profile is

o(&)= I,(BE)K,(BR,/R,) + Il(ﬂRl/RO)Ko(ﬁg)
I,(B)K,(BR;/Ry)+ I, (BR; /Ry Ko (B)

b. The total heat loss is then:

T=Ro §=1
Il(ﬂRl/RO )Kl(ﬂ) B Il(ﬂ)Kl(ﬁRl/RO) }

Il(ﬁRl/Ro)Ko(B)+ IO(B)Kl(ﬂRl/RO)

= 47BkB(T, - T, )|:
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10D.2 Duct flow with constant wall heat flux and arbitrary velocity
distribution
a. The analogs of Egs. 10.8-19 26 are

00 1J(,00 1d(,.d¥

ORI e
)5z = €2 * oz g a *ag )= 0E)

After multiplication by & the second of these can be integrated once

to give

ay -
S Cols E0(E)dE +C,

Then division by £ and further integration gives Eq. 10D.2-1 (along
with the defintion in Eq. 10D.2-2). The constant C, has to be zero,
since the temperature must be finite at the tube axis (B.C. 1). Then
from B.C. 2 we get C, =1/I(1) using the equation immediately above.

To get the remaining constant, we use the integral condition
analogous to Eq. 10.8-24, to get

£ =[10(£,0)0(&)EdE
= [}|Cog + Caff E1(E)aE + C, Jo(&) &
= Cogl(1) +Cy [y 0(£) & [T E1(E)a e + C,1(1)
= S+ [T [ o(&)E| [ E1(E)aE fig ++C1(1)
From the last 1i11e, Eq. 10D.2-3 follows immediately.

‘ b. The wall and bulk temperatures, in dimensionless form,
are given by

_ o908z
[ ocds

0,=0(£=0,0) and 0,

Substitution of the result in (4) into these expressions gives
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11A.1 Temperaturein a friction bearing.

The method given in the solution of Problem 10A.3, based on Eq. 10.4-9, gives

the maximum temperature rise in the lubricant as

1 2 R?

T8k '

_ 1(2.0 g/cm-s)(80007/60 rad/s)?(2.54 cm)? — 16.9C
8 ([4.0 x 10—* x 4.1840 x 107] g-cm/s%-K) '

Tmax - Tl

and the maximum temperature Tp,,x as 217C.

Next, we consider the analysis given in §11.4, which includes the curvature
effects. Since T} and T are equal, Eq. 11.4-14 is applicable and gives

£y = 2In(1/k)
RNV

as the location where the temperature Ty,.x occurs. For this problem, x = 1/1.002;
hence,

21n(1.002)

{max = ([@002)E — 1) — 0999001165

which location is essentially in the middle of the gap.

To evaluate Tpax, we multiply Eq. 11.4-13 by (T1 — T) to make each term
finite; the result (after division by x* in the numerator and denominator) is

T MZR | ((1/&)2 (1 e)- (%) ]

With € = &nax, We obtain the maximum temperature rise in this system as

S (2.0 g/cms)(80007 /60 rad/s)*(2.54 cm)® 1
T (4.0 x 107% x 4.1840 x 107] grem/s2K)  (1.0022 — 1)2
- [~0.002000667 + 0.002002667)
= 8.438 x 10° - [2.00 x 10°) = 16.9C

in agreement with the previous calculation. This good agreement is attributed to
the narrowness of the gap relative to the cylinder radii in this problem.

I



11A.2 Viscosity variation and velocity gradients in a nonisothermal film.

a. We begin by determining the temperature at which the logarthmic discrep-
ancy, A, between the two viscosity representations in Eq. 11.4-18 is largest. The
discrepancy is expressed as follows:

A = In(First p(z) function) — In(Approximation to first u(z) function)
[eRE ()] [ 2)
TOT 6 To T5 6

Use of Eq. 11.4-1 to express (z/6) in terms of temperatures then gives

se | (225)] - [ (2]

B [T—To T—To]

)

T Ts

The T-derivative of the logarithmic discrepancy is

dT ~ T, |[T? Ty

dA _ B[T, 1
T2 T;

Setting this derivative equal to zero, we get

To 1
—ﬁ:—fﬁ; or T=Td=\/TOT5

as the temperature of maximum discrepancy between the two expressions for In p(z).

b. For the conditions given,
1(To) = p(80°C) = 0.3548 x 1072 g/cm-s;
1(Ts) = p(100°C) = 0.2821 x 1072 g/cm-s;
Ta = 1/(273.15 + 80)(273.15 + 100) = 363.01 K or 89.86°C

Egs. 11.4-14 and 11.4-19 then give the viscosity at Ty as

#(za) = o exp [(Z_z) (f’f’: :g)}

02821\ (89.86 — 80
= (03548 cp) exp Kl (0.3548)) (m)]
= (0.3548 cp) exp [(—0.2293)(0.493)] = 0.3169 cp

Three-point Newton interpolation of In g in Table 1.1-2 gives u = 0.3151 at 89.86°C,
so the largest relative discrepancy is A = —0.0057, or —0.6 percent of pu(z).
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11A.3 Transpiration cooling.

a. In the absence of transpiration, Eq. 11.4-1 is indeterminate, but its limiting
form is obtainable by expressing the exponential functions as first-order Taylor
expansions in w, (and thusin Rp):

T—T1 1/7’—1/R

T.—T: 1/kR—-1/R

This profile, dcsignated as Oy, is tabulated here for the present geometry:
r, microns 100 200 300 400 500
O 1.000 0.375 0.1666... 0.0625 0

In the presence of transpiration with the given rate w, = 1 x 107° g/s, the
constant Ry in Eq. 11.4-27 is

_ (1x107° g/s)(0.25 cal/g-C)
® ™ (47)(6.13 x 10~5 cal/cm-s-C)
= 0.003245 cm = 32.45 microns

Equation 11.14-27 then gives, with r in microns,

T-Ty  (exp(—32.45/r) — exp(—32.45/500))
T. — Ty ((exp(—32.45/200) — exp(—32.45/500))

A table of this function, here called 0, follows:

r, microns 100 200 300 400 500
Oy 1.000  0.406 0.185 0.070 0.000

¢. The ratio of the heat conduction to the inner surface r = kR with the latter
transpiration rate to that with w, = 0 is, from Eq. 11.4-32,

@__ ¢
Qo expod—1.
_ (Ro(1 — k)/kR)
exp(Ro(1 — k)/kR) — 1

_ (32.45)(0.8)/100)
~ exp(32.45)(0.8)/100) — 1
_ 0.2596 0876

exp(0.2596) — 1

Thus, this small rate of transpiration reduces the rate of heat conduction to the
inner surface by 12.4 percent.



11A.4 Free-convection heat loss from a vertical surface.

The physical properties for this problem are as follows, evaluated at an average

temperature T = (Tp + T;)/2 = 110°F = 43.33°C = 316.5K:

B=1/T =0.00316K™*
p = pM/RT = 0.001154g/cm?
p=1.923 x 107 *g/cm-s from Table 1.1-2

~

Cp =1.007 J/gK from Perry’s Handbook, 6th Ed., Table 3-212
= 0.2407 cal/g/K
k = 0.0276 W/m-K from Perry’s Handbook, 6th Ed., Table 3-212

= 6.60 x 10" °cal/s-cm-K

The Prandtl and Grashof numbers are then

Pr— 9_;_;_&
(0.2407cal/g-K)(1.923 x 10™* g/cm-s)
- = 0.701, and
6.60 x 10-5cal/s-cm K) > an
G = P98 — T)H?

p2
_ (0.001154g/cm?)2(980.7cm/s2)(0.00316K ™" )([(150 — 70)/1.8]K)(30cm)?
N (1.923 x 10~%g/cm-s)?

=1.34 x 10°
The heat loss rate from one side of the plate, according to Eq. 11.4-51, is
Q = WHgayg = WC - k((To — T) (GrPr)'/*
With Lorenz’ value of C| this gives

Q = (50cm)(0.548)(6.60 x 10 5cal/s-cm-s)([80/1.8]k)(1.34 x 10® x 0.701)!/*
= 7.9 cal/s

With the value C= 0.518 recommended by Whitaker for air, the result is

Q = 7.5 cal/s
However, this value of C is based on a Prandtl number of 0.73 for air, rather than
the value 0.701 found at the present conditions from more recent data. Linear

extrapolation of the table on page 349 gives a C value of 0.516 at Pr= 0.701, and a
corrected heat loss rate of 7.4 cal/s.



11A.5 Velocity, temperature and pressure changes in a shock wave.
a. From Eq. 11.4-7, the initial air velocity is
v = Maj/yRTy /M

= (2)4/1.4(530 R)(4.9686 x 10* Ib,,ft? /s?- Ib-mol-R)(28.97 Iby, /Ib-mol)

= 2256 ft/s
b. The final velocity v, is found from Eq. 11.4-75 with £ — oo, so that
| N—1 2 1
oo a= 3

¥y+1 v+ 1Maj
0.4 21

== 42220375
2.4 + 244

Then Eq. 11.4-69 gives
Voo = ¢v1 = (0.375)(2256) = 846 ft/s
The final temperature is obtained from the energy balance, Eq. 11.4-65:

T =Ti 4 5ot o)
1 29562 — 8462 ft2/s2)/2
— (530 R) + = (22567 — 846" t'/s)/

2 (0.242 Btu/lb,-R x 2.5036 x 10* 1b,,ft?/s?-Btu)
= 891°R

The final pressure is calculated from the foregoing results by use Eq. 11.4-61 and
the ideal gas law:

PooVoo/Too = p1v1/T1; hence

e () (T
Poo =11 Voo Ty
2256 891
=4.48 atm

c. The change in specific internal energy is
U = CvAT = (Cp/y)AT
= ([0.242/1.4] Btu/lb,,,-R)(891 — 530 R)
= 62.4 Btu/lbp,,
and the change in specific kinetic energy is
7 1 (8462 — 22562 ft2 /s?)
22.5036 x 10% 1b,,ft2 /s?-Btu)
= —87.4 Btu/lbp,




11A.6 Adiabatic frictionless compression of an ideal gas.

The states encountered in such a compression satisfy Eq. 11.4-57,

pp T =C1
as well as P
;)—f =R/M

Combining these relations, we get
pTp " =Tp' ™" =Cs
Hence, the initial and final states in such a compression satisfy
T _ (ez) i
Ty P1

and the final temperature in the case considered here is

T, = (460 + 100)(10)**~! = 1407°R = 947°F

[1-0



11A.7 Effect of free convection on the insulating value of a horzontal air
space.

The relevant properties of air at 1 atm and 100°C= 373.15 K are:

p = 0.02173 cp from Table 1.1-2 = 2.173 x 10™* g/cm-s
p=pM/RT = 1/(82.0578 x 373.15) = 0.0009461 g/cm?
B =1/T =0.002680 K~

~

Cp = 1.015 J/g-K from CRC Handbook 2000-2001, pp. 6-1, 6-2

k = 31.40 mW/m-K from CRC Handbook 2000-2001, p. 6-185
=31.40 x 107° W/ecm-K

(1.015 J/g-K)(2.173 x 107* g/cm-s)

Pr=C,u/k =
v = Conf 31.40 x 10~ W/em K

=0.703

The no-flow state will be stable as long as the Rayleigh number, GrPr, does not
exceed its critical value of 1708, given in Ref. 4 of §11.5. This gives the following
restriction on the temperature difference:

P2 9B(Ty — To)h® Cops
p? k

<1708

or

17082
— < —_
(T = To) < — s

B 1708(2.173 x 10~%)2
~ (0.0009461 g/cm®)2(980.665 cm/s?)(0.002680 K~1)(2.5 cm)3(0.703)
=3.1°C

If a very thin metal sheet is placed midway between the two plates, forming two
cylindrical chambers of height h/2, then a corresponding calculation for the total
temperature difference across the two chambers gives the stability condition

(T, — To) < (2)(8)(3.1) = 49.6°C

for absence of free convection.

1=



11B.1 Adiabatic frictionless processes in an ideal gas
a. For adiabatic frictionless processes, the fluxes may be set
equal to zero. Then the energy equation becomes

o8 DTz_(alnp) Dp oC, DT=_(81np) Dp
»Dt ~ \9InT ), Dt M Dt \JInT), Dt

For an ideal gas p=pM/RT, so that (dInp/dInT), = -1. Then

DT _Dp

—E—(a +bT + cTz)
RT Dt Dt

Hence for a given element of moving fluid

(£+b+cT)dT =Rd—p
T p

Integration from the initial state p,,T; gives answer (a) or

T c p
— T - T2 -T2)= £
alnT1 +b( T1)+2(T Tl) Rlnp1

c. For the data given, we have

alnﬁ = 3.2041n§—(—)9 =3.156 cal / g-mole-K
T, 300

b(T, -T;)=18.41x107(800—300)=9.205cal / g - mole-K

_6 .
%(T% —le) = _ﬁfl-s_;(ﬂ_(SOOZ —3002) =-1.231cal / g-mole-K

Summing these results we get

RInP2 211124 or P2 cexp 22 _og

P1 12 1.987

Hence p, =270 atm

P - g



11B.2 Viscous heating in laminar tube flow (asymptotic solutions)
a. From the energy equation we have

pé _aZ——k_l_g_( £)+ (avz)z
25 rarar )T H U ar
Into this we substitute the expression for the velocity distribution of a

Newtonian fluid in a circular tube: v, = vz,max[l - (r/R)2 ] This leads,

then, to Eq. 11B.2-1.
b Integration gives (for the isothermal wall) at large z :

The constants may be evaluated using the boundary conditions given
in the problem, and the result is given in Eq. 11B.2-2.

¢. To get the z dependence of the temperature we perform an
average over the cross-section

dT 4#02 max

PC,0, e Jo(1- &2 joas-— j E2EdE

which leads to the result
T =T, = (440, er /0C,R? )2

We then make the postulate in Eq. 11B.2-4, and substitute this
postulate into Eq. 11B.2-1 to get the following equation for f(r)

A Apv, oo k1 d (L, df) AH0 a0
C 1- =L
P01 87) i F o o) e

This equation may be integrated to give

Fr)= (102 ey [K)(E2 - 1 £%)

which leads to Eq. 11B.2-5.

-9



11B.3 Velocity distribution in a nonisothermal film

a. When x =06, the two terms inside the large bracket are
equal, but with opposite signs, and hence v, =0.

b. The second term in the bracket, being a constant, will not
contribute to the derivative. The factors in front of the bracket are
also constant. Therefore the derivative of the bracket is:

d 0+ (1Y8)In(us/ug) 1-(x/8)In(ps/mo)( s )"\ ((15) 1
dx[ ] (.ua/l‘O)X/(s [(ﬂa/#o)X/s]z (‘uOJ ln( )

Ho) O

When we set x equal to zero in this expression we get

dix[] = (Y8)In(ps/t) - (1/8)In(p5 /1) = 0

x=0

Hence at x = 0, we have found that dv, /dx =0
c. Let M=In(us/u,) and X = x/8. Then Eq. 11.4-20 becomes

” =pg62cosﬂ( 1 ‘)(1+MX 1+M)

z Ko MZ eMX eM

_pg8*cosB( 1\ (1+MX)eM - (1+M)eMX
- o M?2 eM(X+l)

pg8? cosB( (1+ MX)(1+ M+ 1 M?+-) = (1+ M)(1+ MX + s M?X? +---)
- Lo M2eME)
_ pgcosﬂ(l— X*+ O(M)J

2[10 eM(X+1)

When ps — p, (or M — 0), the above result simplifies to

” __)pgcosﬁ(l_Xz)zpgcosﬂ(l_(ﬁ)z)
: 2u, - 2u, )

in agreement with Eq. 2.2-18.

|1-10



11B.4-Heat conduction in a spherical shell

In this problem, the heat flow is in the 8 direction. Then Eq.
B.9-3 simplifies to

1 d AT
“lsing?s | =
sianO(Sln d@) 0

The first integration leads to

sin@ér—zc1 or ar _ .Cl
do dO sin0

The second integration gives
T=C,Injtan16|+C, =C,Intan16+C,
Since the argument of the tangent function is always less than a right
angle, the absolute value sign is not needed.
The constants of integration are obtainable from the
boundary conditions, which give: :

T,=C,Intan16, +C,; T, =C;Intan}(7z-6,)+C,

We next form the following differences:

T, =C,[Intan16, — In tan . —C ln— 2026
T, -T, =C[Intan}6, - Intan}(z-6,)|=C, tani(7-6,)

tan1 6
tan(7 - 6,)

T-T,=C|Intan}6-Intani(n-6,)]=C,In

Finally we get for the temperature distribution in the shell:

T, _ Injtan}6/tan}(z-6,)]

, In[tani6, /tani(z- 6,)]

T
T,

This solution clearly satisfies the two boundary conditions.

-1



11B.5 Axial heat conduction in a wire

a. This problem involves purely axial flow of heat (by
conduction and convection) so that the energy equation is

Co E—kﬂ or _pépvdT_dzT or —A—dl—dzT
Py zdz dz k dz dz? dz dz*

in which v, = —-v, and A= pépv/k.
- Integration of the differential equation gives

—AT~EI+C
dz

At z=o, we know that T=T, and dT/dz=0; hence C, =-AT...
Hence the first-order differential equation becomes

C)

T -AG® where O=(T-T,)/(T,-T..)
z

in which (since ©(0)=1)

In®=-Az+InC, or 0= r-T. =e

This is just Eq. 11B.5-1.

b. For temperature-dependent physmal properties we have
the following energy equation:

do _d

£-d (k K(@)—) or -AL©)_4 (K(@) )

—pC L(@) dz dz

inwhich A, = pép,,v /km. The first integration gives

+AL[" L(@)—d 2 =K(© )‘;(;’ +C,

RESYA






11B.6 Transpiration cooling in a planar system

We start with Eq. J of Table 11.4-1, and assume steady-state,
negligible change in pressure with distance, and negligible viscous
dissipation. Then for constant thermal conductivity this equation
simplifies to

ey S -
ay T ar dn  dn®

~ dT ,d*T - de d’e
pC o——

in which @=(T-T;)/(T,~-T,), n=y/L, and ¢=pCu,Lfk, a
constant. This equation is to be solved with the boundary conditions
that ©(0)=1and 6(1)=0.

Set p =dO/dn to get the first-order separable equation

=—/— or £iB:q)dr;
dn p

which may be integrated to give

Inp=¢n+InC, or %—%Epole"’h

This is also a first-order separable equation and integrating it gives
—C. [ G

©@=C,[e*dn+C, =5 ¢ +C,

The constants of integration are then found from the boundary

conditions, and we get finally

9 _ p?

0=
1-e*

The heat flux at y =0 is then

dr| _ KT,-T.)de| _k(T,-T,) ¢

=—-k— =
P L dn,, L 1-¢

-4



11B.7 Reduction of evaporation losses by transpiration
a. Without transpiration, we have from Eq. 11.4-31

_4nkR(T,-T,) _ 4n(}ft)(0.02Btu/ hr-ft-°F)(327°F)
- 1-x o 1
=82Btu/ hr

Qo

b. With transpiration, we get from Eq. 11.4-30

. 4aRk(T, - T,)

Q= TRl RG] 1 with R, =w,C, /47rk

We do not know R,, but we can get it by using an energy balance in
the form

~ | AnkR, |, A
szrAHvap _( é )AHvap
P

When this is inserted into the left side of Eq. 11.4-30, we get

My (T, -T,)

A

CP B e(RO/KR)(l—K) — 1

This may be solved for R;, and then the energy balance may be used
to convert the result into an expression for Q

47mkAH C(T,-T
Q: 7T . vap( kKR )ln( p( 1 K)+1}

CP 1-x

_ 47(0.02)(91.7) ( 0.5) ln( (0.22)(327) 1)
0.22 0.5 (91.7)
= (104.76)1n(1.7845) = (104.76)(0.5792) = 61 Btu/hr

vap

J)-15



11B.8 Temperature distribution in an embedded sphere
a. In both regions the partial differential equation is

EIAL NEETTIVELT
r? or dr) r*sin6 90 a0

b. At the surface of the embedded sphere the boundary
conditions are that T, =T, and that k,(dT,/dr) = k,(JT,/dr).

c. For the temperature field inside the sphere, substitution of
Eq. 11B.8-1 into the terms in the above differential equation gives:

19(,dT [ 3k B
2 - 2Ar™ cos 0
2ar( ar) {k1+2k0} oo

1 9(. .aT 3k
7| sin@——|=~| ——2— [2Ar ' cos 6
rzsinf?é’e(sm ae) [k1+2k0} T

Outside the sphere we get for the same two terms

1 d( ,dT 4 k, -k, ( )
—1 0 0
2 81'( 8r) 2Ar " cosO - Z{k 2k, } Ar~cos

1 3(. ,aT K~k
2 [sinoZ|=-|1- 24
7 sin 0 ae(smeae) [ [k +2k }( ) } " COSV

d. The boundary conditions are also satisfied:

3k, k —k,
ARcos6=|1- AR cos @
[k1+2k0] €os [ [k + 2k, H €08

3k, | 3k k —k
k 0 |AcosfO=k 0 |Acos@ +ky| 3——2|AcosO
1[k1+2k0] o O[k1+2k0] o8 0[ k1+2k0} ‘

|- 16



11B.9 Heat flow in a solid bounded by two conical surfaces
a, The temperature has to satisfy the differential equation

d( . ,dT
%[Sm 65—0—) =0

b. Two successive integrations give

ar _ G
dé sin@

and T=C,Inltan{6|+C,

Since in this problem, 6 may go from 0 to 17, and hence the tangent

will not have negative values. Therefore absolute-value signs are
not needed.

c. The integration constants are determined from the
following simultaneous equations:

T,=C,In(tan6,)+C, and T, =CIn(tan16,)+C,
On solving them, one gets

- T,-T, — I,-T,
Intan16,-Intanl6, In(tanl6,/tanl6,)
C._ T,Intan3 6, - T,Intanl0,

" Intanl6, -Intanle,

1

d. The 6 component of the heat-flux vector is obtained from
the first equation in (b) above

o =

L 1dT . Ck _ k T,-T,

rd0  rsin rsin6In(tanl6,/tanl6,)

e. The total heat flow across the conical surface is then

In(tan6,/tan16,)

Q= _[02”%|0=61rsin 0,d¢dr = 2Rk

=17



11B.10 Freezing of a spherical drop
a. The heat conduction equation for the solid phase is

1d( ,dT

——|r"— =0 R, <r<R
rzdr(r dr) » (Ry<r<R)

Two integrations lead to T = —(Cl/r) +C,. The constants of
integration are determined from the boundary conditions

B.C.1: Atr=R,, T=T,; B.C.2: Atr=R, —kﬂzh(T—Tw)
dr
This leads to the following expressions:
T,-T, B Ty-T,

; Co =Ty +

T WR) - (YR~ (/) |(VR) = (1/Ry) - (k/nR?) R,

The total heat flow across the spherical surface at r =R is then

Q=4HR2(—k—C§)

r

k ) T,-T.,
R|WR)-(yRy)- (/)
This can be rearranged to give the solution in the text.

~ b. We now have to equate the heat liberated on freezing at
t = Ry to the heat flowing out across the surface at r = R:

:47rR2(—

r=R

dR;  h-47R*-(T,-T..)
dt  1-(hR/k)+(hR*/kR;)

(o, (42R5)
Integration then yields
~(oAH, [ [1- (rR/k) + (hR? /KR )|R}dR, = hR? (T, ~ T..) [/ dt

where t; is the time for the freezing of the entire droplet. Evaluation
of the integrals then leads to the expression in the text.

=13



11B.11 Temperature rise in a catalyst pellet

| a. We make an energy balance over a spherical shell of
thickness Ar:

_+4mr’ArS, =0

r+A

anr?q,| —4n(r+Ar)’yq,|
Then division by 47Ar gives

(4 )00 — ("0,
Ar

r’S, =0

When the limit is taken that Ar — 0 and use is made of the definition
of the first derivative, we get :

d(.o 2¢ _
E(r q,)—r S5.=0
Insertion of Fourier's law then gives

d 2 d]) 2 d( Zdl) 2
—| r°k— S, = o —| rF— =
dr(r 5 +r°5,=0 (**) or kdr r e +r°5,=0

for the appropriate equation describing the heat conduction with
heat generation by chemical reaction and constant k.

b. From Eq. B.9=3, with the time=derivative term set equal to
zero, and all velocities set equal to zero, and all derivatives other
than r derivatives set equal to zero gives the heat conduction
equation in spherical coordinates for a system with no chemical
reaction. Therefore, we have to add a term describing the heat
production per unit volume:

1d (rz dT
r2 dr\" dr

k—— —)+SC =0

which is the same as the result obtained in (a).
c. The above differential equation may be integrated in a
sequence of steps as follows:

- 14



_al_(rz_ci_T_):_Scr2. (rzi’l_“_)_'_scr"’w. ar __Sr G
dr\ dr k' dr) 3k Y B

St G

T=-Sc _ 1 * %k
6k 7 +C,  (**)

The constant C; must be zero, because neither the temperature nor
its gradient are expected to be infinite. The heat loss to the
surroundings provides the second boundary condition needed for
getting C,:

Definition of heat transfer coefficient: g,| _, = h(TR - Tg)

From Fourier's law: 4| _. = _kﬂ - +ScR
r=R dr <R 3
A . | S.R
Equating these expressions: h(TR - Tg) =3
S.R? S.R
Inserting T, f *k). h —=< C,-T |==¢
serting Ty from (***) ( 6k+2 g) :
S.R* SR
1 i f C: p— c T
Solving for C, C, - +5+ T,

Thus we finally get the temperature profile within the catalyst pellet:

S R? Y| SR
T-T, =2 |1-|Z :
: 6k[ (R) ]+3h

d..When the heat transfer coefficient goes to infinity, the last
term in the temperature distribution drops out.
e. The maximum temperature in the system is

SR?> SR S.R? 2k
T T =2 2 (g
max ~ 18 = T T3y 6k(+Rh)

f. In Eq. (**) one would have to leave k inside the differential
operator, and insert the specific r dependence of both kand S, .

i =20



11B.12 Stability of an exothermic reaction system
a. For the postulated steady-state solution

2

k—g;z: +S,0exp(A(T - T,))=0 with T=T,at x=1B

b. Using the given dimensionless variables, we may rewrite
the problem as

2
d——?—+/le =0 with O=0at £=+1
dg
¢. Multiply the differential equation by 2d®/d¢ to get
do d°e 4o d(do de®
2 +2A—e®=0  or —(——) +2A—=
s d&’ g dg\ dg 3

Integration then gives

2
de
(EJ + 2).36 = Cl

We now use the fact that, from the symmetry of the problem, at £ =0
we must have d©/df =0. Then if we let ®=0, at £=0, we can get
an expression for C; and then write

2
(%—?) —2A(exp®y —exp®)=0

Note that we have not "evaluated” the integration constant C,, we
have merely replaced it by ©,, which has a recognizable physmal

meaning.
c. We next take the square root of both sides:

%(g =+2A,/expO, —exp©

=21



The minus sign has been selected, since the left side of the differential
equation is inherently negative, and the quantity under the square-
root sign is positive. Then we integrate over half the plate

® do _ 0
J \Jexp©, —exp® V22 [rdg

d. The integral can be done analytically by making the change
of variable y* = exp(® - 0,):

1 0 d®
\Jexp©, \/1 - exp(©-06,)

= exp(—%@o )lep(_%eo)

2dy
1=y’
= 2exp(-40, Jarccosh(exp10,)

The integral over y can be found in an integral table.
Combining these last two results we get

exp(-1©, )arccosh(exp18,)=+11

e. For A >0.88 .no value of ©, can be found. This means that
when S, is too large, or B is too large, or k is too small, then the heat
cannot be dissipated fast enough.

This is an important example, because it illustrates that it is
not always possible to get a steady-state solution to a physical
problem. To do a complete analysis of this problem, it would be
necessary to solve the problem with the time-derivative term
included.
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11B.13 Laminar annular flow with constant wall heat flux
The equation analogous to Eq. 10.8-12 for the annular flow is

2 2
A r 1-x R\|dT ,19d( dT
C 1-| = | ~——In| = | |—=k=-=|1r—
P ”vz'max{ (R) In(1/x) (r)] 0z r&'r(r 81’)
where Eq. 2.4-14 has been used. We now introduce dimensionless

variables: £=7/R, {= kz/ pépvzlmasz, and ©=k(T -T,;)/q,R. Then
the above energy equation becomes

0800 e el %)

This is to be solved with the boundary conditions

T 20

Atr=kR, ‘k5;=% or at¢=k, ——af—l
aT J0

Atr=R, -k—=0 té=1 -—=0
r E» or até 9
Atz=0, T=T, or at{=0, ©=0

We seek an asymptotic solution for large downstream distances of
the form O(&,{)=C,{ + ¥(&). The function (&) has to satisfy

Fael s %) -)-0-0 )]

The first and second integrations lead to (cf. Eq. 10.8-27)

¥ _ (& &) 1-k*(E . &Y. G
b?‘c"[(z 4) Ink (211“5 4)}5

[1-23



The constants C, and C; are determined from the boundary
conditions at { =k and £=1:

K(1+1_K2)
Co= i 2 and C,=- Inx —
(1-K4)+____(1“" ) | (1_K4)+_(1"‘ )
Ink 'an

Then the equation for the radial distribution of the temperature is

w[( —%)—11;”‘: (mg-l)]—;{nll;i )mg
Y= — +C,

(1_K4)+(1‘1'n’(:)2

The constant C, can be obtained by using an integral condition,
similar to that in Eq. 10.8-24 or 25

27kRz- g, = f(f”_[fR,oép(T -T,)v,rdrd® or (= %ﬁ@qfx’jdé

where ¢ =v, /v, .. .This gives

_1p g ¢ & e &
g_;jx{c0§+co[(T—Ig) mx( Iné H+c11n§+c}

(1-8)- (1) Jee

or
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since the terms containing ¢ just cancel.

This last equation has to be solved for C,. This is in principle
an easy problem, but extremely time-consuming and unrewarding. It
can, however, be solved by using Mathematica, and the result is*

~9(1- k2)’(11+3x2)~2(1- k2 (88 + 88K +25k* ) Ink
+3(-25- 24K +18x* +24K° +7x% )(In k) - 72K* (In k)’
72(1- k) (1~ k%) + (1 + k?)(Ink))”

K

*The authors wish to thank Mr. Richard M. Jendrejack for his help
on this problem.



11B.14 Unsteady-state heating of a sphere _
a. The time-dependent heat conduction equation is

ar_ 1 a(rzgzj , % _19(.00
o rror\l or ot E2JE\° ¢

In the second form, we have introduced the dimensionless variables:

@ =(T-Ty)/(T,-T,), £E=7/R, and 7=at/R%. The solution in Eq.

11B.14-1 is, in terms of the same dimensionless variables

o nsinnmé _ 2.0
0=1+2) (-1)' ——="""
n§=:1( ) nmg

b. We do the differentiations; then it is clear that the first and

last expression below are the same. Therefore Eq. 11B.14-1 satisfies
the differential equation.

86 < n 2,2 sinnmf -n’n’r
= =2¥Y(-1Y*(- e
ot Z‘l( ) ( nr ) nné

8@)_ Scosnmé  SINnAS | 2.2,
252 =25, (1) nn) SOSS ST

8( 5) 221( 1) [cosnmg_mzésinnné cosnzé | _, ”,21

d¢ nm nm nmw

1 9 nasinnmé | 2.2,
z azs( 5) 23" {

nné

c. When & =1, we get from Eq. 11B.14-1

®= 1+22( 1)"5“‘”” REATS!
nmw

since sinnz =0 for all integral values of n.
d. Inasmuch as
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sinx
=1

lim
-0 x

the solution for £ =0 is certainly finite:

©=1+23 (-1)'e""7

n=1

e. In dimensionless form Eq. 11B.14-2 is

_ v _qyn SInnmé
—1-.2’12;1( 1) i

Then, multiplying by {sinmaé and integrating gives

“f; Esinmaédé = 2;(—1)" —n;_f; sinmné sinnnwédé

The left side can be evaluated as follows:

1 1 mr mr
—| Esinmnédé = - xsinxdx = — sinx — xcosx
-[06 6 § (m71:)2 IO (mn_)Z ( )|0
1 1 m
=+ /4 T)=—o =—(-1
()’ (mmcosmmr)  —cosmm mn( )

The right side may be evaluated thus:
22’1(—1)n %%f;sin nag sinmmédf = ZZ(—I)" ;1—71-? | sinnxsinmaxdx
< n 1 (7 1 m
= 2 _1 I ___5 - _1
n§=:1( ) nﬂz(z m") mn( )

Thus the two sides are equal, and it is proven that the initial
condition is indeed satisfied.
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11B.15 Dimensionless variables for free convection

a. When the proposed dimensionless quantities are intro-
duced, Egs. 11B.15-1 to 3 follow directly. Nothmg more needs to be
said.

b. We can convert Eq. 11B.15-1 into Eq. 11.4-44 if we require
that

(I) szyO =1
v,0H

Then, when (I) is substituted into Eq. 11B.15.2, then the latter may be
converted into Eq. 11.4-45 if we also require that

(11) E_ _pr
PYeVy0

(III) yogﬁ(To - Tl) =P

V40720

T

Next we substitute (I) into Eq. 11B.15-3 and further require that

pcpl/ovyo

then Eq. 11B.15-3 becomes Eq. 11.4-35.

We thus have four equations from which to determine the
three "scale factors" y,, Uyor and v,,. However, it can be seen that
Egs. (II )and (IV) are not independent, since multiplication of Eq. (IV)
by Pr just gives Eq. (II). Thus we have three independent equatlons
from which to determine three unknowns.

We now eliminate y, by multiplying Egs. (I) and (I) to get Eq.
(V), and by dividing Eq. (III) by Eq. (I) to get Eq. (VI):

U ol
V) 07 =Pr
vjoHP

=2



(VI) gB(TO ;'Tl)H — Pr

sz

Introducing the abbreviation B=pgB(T, - T} ), Eq. (VI) can be solved
for v, to give Eq. (VII), and then v,, is obtained from Eq. (V) to give
Eq. (VIII):

_ aBH

3
(VI) 0,0 = \/Hu [aBH _ da B
pPry pu pH

Finally y, may be obtained from Egs. (IV) and (VIII):

k uH ouH
IX = = = d =

The reciprocals of these last three quantities appear in Eqgs. 11.B-41
to 43.

c. If all the dimensionless groups were set equal to unit, then
combination of Egs. (II) and (IV) would give Pr = 1, thereby severely
restricting the applicability of the results.
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11C.1 The speed of propagation of sound waves
a. Equation 11C.1-1 can also be written as

(2) _<3H/8T>p(ap) o (9/98), _(9H/IT), (9p/aT),

v )s  (auyar), \av ), (9v/3s), ~ (9uyaT), (av/ar),

This may be rearranged to give

(35),50), ), (.56, (57,

Next we apply the Maxwell relations to the first two factors on the
left and right sides, and we apply two of the four "fundamental
relations” for pure fluids to modify the third factor

{2 42 J12). )15 [12)

Then we apply the relation

HEE -

to the first and third factors, to obtain

(98/3p), _(95/9V),
(9v/3s), ~ (ap/9S),

On cross-multipiclations, this gives an identity.
b. The equations of continuity and motion are

%(po +07)=~(V- (0o +")(vo +V')); .(%(po ) (Vo +v) ==V (py +7')

Since p, and p, are constants and v, is zero, we get (when the
products of the primed quantities are neglected)
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dp ov
= = Po(V-v) and py—-=-Vp

¢. Since the momentum and energy fluxes have been taken to
be zero), the flow is isentropic. This enables us to rewrlte the
equation of motion thus:

pg %—: = —'(VP)(%)S =—(Vp )y(%)T

To get the second expression, Eq. 11C.1-1 has been used. Use of the
definition of the speed of sound then gives Eq. 11C.1-4.

d. Next we take the time derivative of the equation of
continuity to get

9? d ov 0?
—a-g=—§[po(v-v)]=—(v-p0§t—) or 5£=va2/0

To get the second form, the equation of motion of Eq. 111C.1-4 has
been used.
e. From Eq. 11C.1-6 we get

%0 _ 27\ , . [Zn
i pOA(/1 v sin| = (z vst)]

9’ 27 27
vsza—zfa—vfpoA 7) sm[ 3 (z-v t)]

Therefore, Eq. 11C.1-6 is satisfied.
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11C.2 Free convection in a slot
a. The equations of change are simplified as follows:

Continuity:
d d
5P = _(;ﬂ pvx) and at steady state and v, =0 we get 0=0
Motion:
d J I v, 9%,
i —(zpvzvz) ---pg+ u( t o )+p/3g(T T) or
v, _~ — . _
O=u e +pﬁg(T—T) since p =—pgz + constant
Energy:
d°T =
O0=k— a7 whence T=T +Ay

b. The boundary conditions are;
v,(+B,¥)=0 v, isanodd functionofy  T(x,0)-T =0.

c. To get the velocity profiles we rearrange the equation of
motion as follows

9*v, __PBgA
2 =~ Yy
ox u
This may be integrated to give:
pﬂg PBgAB* (. (x)
v,(x,y)= o ¥ y+Cx+C, or v,(x,y)= 2 1-( 3] v

d. For water at 20°C , p =0.9982 g/ccand B = 0.00021 ("C)~".
The maximum velocity will occur at x =0 and y = W, so that
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_ PBSAB*W
2u

Z,max

Hence the corresponding temperature gradient will be

_ 2;uvz,max
~ pBgB'W
2(1.0019%102 g/cm- s)(

_ 3600 s
~ (0.99823 g/em®)(0.00021 °C™)(980.7 cm/s?)(0.01 cm)?(0.2 cm)
=0.271 °C/cm

(0.001)(2) cm)
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11C.3 Tangential annular flow of a highly viscous liquid
First, rewrite Eq. 11.4-13 to eliminate N in favor of the
Brinkman number Br, which appears in Eq. 10.4-9:

B rgpla B

To show that this reduces to Eq. 10.4-9 in the limit of a very thin
annulus, begin by taking the limit of the term that does not contain Br
and then we treat the term containing Br.

Term without Br:

Welet k=1-¢ and £=1-¢(1-1n), where n is the x/b of
§10.4. Then using Eq. C.3-2 we find

_Iné_,_ ~e@-m+1e2@-n)+-]
Inx —[8+%52+...]

=1-(1-n)+0(e)=n+0O(¢)

In the limit of vanishing ¢, this leads to the last term in Eq. 10.4-9.
Term with Br:
The coefficient of Br is now

(o1 |ed-m+3etd-m)’+-
(1-¢)? e+ie’+-

When everything is expanded in terms of powers of £, we find

1 1—48+682+---[ \ ,
1-11+2&(1-n)+3e°(1- Foe
46 1-e+1e?+... ( [ (1-m) (1-n) ])

—(1_[1,+ 2 +38% +])([1- 1]+ 3&(-n+n? )+

Simplification of this expression leads to
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‘_1‘2‘(1— 3¢ +%1 32+~")[(—28(1— n)-3e*(1- ’7)2)

de
—(——26 -3¢? —)([1 -n]+ %.8(—-— n+n? )+)]

Then cancellation of some terms gives

é(l— 38+~--)[—382(1-— n)? - {382 (1- n)— e? (—n + n2)+---}]
=i—(1—3£+---)[—3(—n+ n2)+(—n+ n2)+---]

-50n-7)

' This is in agreement with the term in Eq. 10.4-9 that is multiplied by
Br. |
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11C.4 Heat conduction with variable thermal conductivity
First we obtain an expression for the gradient of F:

VF = V(j' kdT + constant)
= [(Vk)dT

_ gk
_de VTdT

The V operator can be taken inside the integral, since it involves only
differentiation with respect to position coordinates and therefore

commutes with the integration over T. Since k depends solely on T

(which may in turn depend on the position coordinates), we must
differentiate with respect to T and then perform the gradient
operation on T, as shown above.

Next, since VT depends on position coordinates, and not on
T, the VT may be removed from the integral sign

vp:v:rj%dT

When the integration is performed, we get
VE =kVT

We now form the Laplacian of F

V2F =(V-VF)=(V-kVT)

But (V-kVT)=0 by the equation of energy. Therefore, we have
finally ,

V2F=0
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11C.5 Effective thermal conductivity of a solid with spherical
inclusions

a. At very large distances from the region containing the
inclusions, the coordinates of the various inclusions (r,0) will not be
very different from one another. Furthermore, if the density of the
inclusions is small, the effect of the various inclusions will be
additive. Therefore to get the temperature field far from the reglon
containing the inclusions, we can write

To(r,G)—T":{l—nk —ko ( )]Arcos@

k, + 2k,

in which n is the number of inclusions, each with a thermal
conductivity k;. This is the equation that the describes the system in
Fig. 11C.5(a).

b. For the system in Fig. 11C.5(b), we can apply Eq. 11B.8-2
directly

. ko — kg
To(r,6)-T =[1_ke:+2k ( ) }Arcos@

regarding the shaded sphere as a hypothetlcal material of thermal
conductivity k.

c. Next we relate the volume of the inclusions in the true
system to the effective volume of the inclusions in the equivalent
system: 27R’n=%n7R">¢. Hence R" = (n/¢)R°.

d. We can now equate the right sides of the above two
equations for the temperature profiles far from the origin

k —ko (_) kett = ko (5)32
k + 2k, ket +2kg\ 1) ¢
We can now solve for the effective thermal conductivity, and express

the ratio k. /k, as 1 + (deviation resulting from the inclusions). This
is exactly Eq. 9.6-1.
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11C.7 Effect of surface-tension gradients on a falling film

a. If we let I be the gas phase and II be the liquid phase, then
the contribution from Eq. 11C.6-4 to the stress component 7, will be
the z-component of

[6,-7"]=V°c or 1l =%€
z

Hence, in Eq. 2.2-13 has to be replaced by
7,, =(pgcosB)x + A

When this is combined with Newton's law of viscosity, Eq. 2.2-14, we
get

do,
R (pgcosB)x+ A

When this is integrated, and the no-slip boundary condition at the
wall is used, we obtain the velocity profile as follows:

2 2
o, <ox8conp (2, 43(_x)
2u o U o

b. The mass rate of flow in the film is
5
w= J';V |, pv.dxdy = pW6j';vzd§
52 AS
=pW6[J§332—;°ﬁ(1—52)d5+7 ;(1—§)d§]

_p°Wgé°® . ApW§?
3u 2u
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11D.1 Equation of change for entropy
a. For the volume element AxAyAz we write a balance
equation (not a conservation equation) for the entropy:

%(psAxAyAz) (oS,

AyAz — (pgvx)
+5,| AyAz—s, | AYAzZ+--+gAxAyAz

A +...
+Ax yAZ

Here the dots indicate the additional terms associated with the
transport in the y and z directions. Then after dividing by AxAyAz
and taking the limit as the volume element goes to zero, we get:

i §=_(__3_ §U +...)_(is +...)+
atp axp X ax X gs

which is equivalent to Eq.11D.1-1.
b . Along a streamline we can write (using Eq. 11.2-2)

DU ..DS DV 1 DS D1
=T=2- 2AV-q)-p(V-v)=(t:VW)]|=T=Z2 - p ==
Dt Dt "ot ™ p[( Q) -p(V-V)-(wW)|=TH; PDip

The use of the equation of éontinuity and subsequent multiplication
by p/T leads to Eq. 11D.1-3. -
c. Insertion of s = q/T into Eq. 11D.1-3 leads to

p%if-z—%(V-Ts)—%(t:Vv)z—(V~s)—(—,18:.VT) -2 (m:)
=—(V-s)- %z‘(q'VT)' %—(T:VV)

In the last form, the right side of the equation has the same form as
Eq. 11D.1-2, so that the last two terms can be identified as the rate
of entropy production (as displayed in Eq. 11D.1-4).
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11D.2 Viscous heating in laminar tube flow
a. We introduce the following reduced variables:

oz _K(T-T°)
R W

max

=

Here T° is the wall temperature (and entry temperature) for the
isothermal wall problem, and the entry temperature for the adiabatic
(insulated) wall problem. Then Eq. 11B.2-1 may be written in
dimensionless form as

— E? 8_@)_11 8_9 2 *
1) 37 5%) 48 ©
The boundary conditions are:

Isothermal wall; at {=0, ©=0
at £=0, 0B/dE=0
at £=1, ©=0

Insulated wall: at {=0. ©=0
at £=0, 00/dE=0
at £=1, 090/d=0

The solution to the differential equation will be written, for both
cases, as a sum of two functions: © =0, +0,. Here the function 0, is
that derived in Problem 11B.2:

Isothermal wall: 0, = %(1 - 54)
Insulated wall: 0, =4¢+(&2-1¢)

When these expressions are put into the partial differential equation
(*), we then get for both cases

Isothermal and insulated wall: (1 — £2 )%% - %%(5 33652)
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This problem is solved by the method of separation of variables, and
the solution is of the form:

0,(&,8) =~ By (&)wi(¢)

i-1

in which the B; are constants, and the functions ¢;(£) and ;({)
must satisfy the following differential equations:

1d d¢, ey dy/,__
gdéj(édé)”(l E%)¢: (%) Fidaaid

The a; are the eigenvalues of the problem, obtained when the
solutions to the ¢, equation are required to satisfy the boundary
conditions. The solution to the y; are proportional to exp(—4;{). The
solution to the ¢; equation has to be done by a power-series
expansion, and we return to that shortly. For the moment we remark

that the solutions to the ¢; equation must satisfy an orthogonality
relation:

[ 0:0,(1-&%)&de =0 for i # j

The final temperature distribution expressions are then

Isothermal wall: 0= %(1 - ’g’4) - iBifpi (g)exp(_uig)
i=1

Insulated wall: ©=4¢ +( ) ZB ¢;(& )exp(—aig’ )

From these solutions, it can be seen that the solutions obtained in
Problem 11B.2 are just the limiting solutions for large values of the
dimensionless axial variable {.
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The constants B; are obtained by writing the above equations
for ¢ =0, then multiplying by ¢j(1 ~-& 2)8,‘ , and next integrating over
¢ from 0 to 1. Doing that we get:

_1[p(1-¢*)e,(1-&7)eae
4 [e2(1-£2)cdE

Isothermal wall: B;

(&” - 3&%)9,(1-£7)¢a¢

Insulated wall: B; = 15 2
[ 07 (1-&2)&de

1

The above results were first given by H. C. Brinkman, Appl. Sci. Res.,
A2,120-124 (1951). '

The eigenfunctions ¢;(£) that satisfy (**) can be written as a
series expansion:

¢i(§) = ’g)bikgk

The coefficient b, may be arbitrarily chosen to be unity. The next
coefficient, b;;, must be chosen to be zero in order to satisfy the
boundary condition at the tube axis. Substitution of the above series
solution into (**) gives the following recursion formula:

by = “‘Z‘iz‘(bi,k-z - bi,k—S)

Therefore, all of the b, can be expressed in terms of the eigenvalues
a; as follows:

— 1 ‘_ 1 ,2 _ 1 3
1 by=-34 by = +g4; bis = + 3361 4; etc.
— — — . 1 —__29 .2
n=0 b3 =0 bis =+54; by =—25004%

The eigenvalues g4; are determined from the boundary conditions at
& =1, which require that:
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Isothermal wall: ibik =0
k=0

Insulated wall: ikbik =
k=0

The left side of each of these equations is a polynomial in 4;. Setting
the polynomial expression equal to zero gives an algebraic equation
which has to be solved for the infinite set of 4;. This is clearly a very
tedious process. The first few eigenvalues have been calculated by
Brinkman in the reference cited above. Also given there are some
sample temperature profiles.

b. The power-law fluid can be handled by the same method
used for the Newtonian fluid, given in part (a). The reference to Bird,
cited on p. 373, gives the details and numerical results.
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11D.3 Derivation of the energy equation using integral theorems
a. For an arbitrary volume V fixed in space, we can write the
total energy balance as

%{(pfl +1pv° )JlV = -—{(n -e)dS + ‘j;(v -g)av

j—(g—t(pﬁ +1 pv? ﬁV = —‘j;(V -e)dV + _‘[(v -g)dv

|4

To get the second form, the Gauss divergence theorem was used on

the right side, and on the left side the time derivative is taken inside -
the integral (because the volume element is fixed). Then, since the

volume V was chosen arbitrarily, the integral signs may be removed
to get Eq. 11.1-6. |

b. For an arbitrary moving volume element V(¢) of fluid, we
may write the equation of conservation of energy as follows:

%f(plfl+%pvz)dV=—-'|‘(n-q)dS— f(n-[u-v])d5+ j(v~g)dV

V(t) S(t) S(t) V(t)

This accounts for the heat transported into V across the surface, and
the work done on V by the surface forces. There is no term accounting
for convective transport across S, since the surface itself is moving
with the fluid velocity. Next, use the Leibnitz formula on the left side
to get

d ~ 8 ~ A
— [(pU+1p? V= [ =(pU+Lpv? @V + [(pU +1pv?|(n-v S
dtv{t() 1po® W V{t) = (ol +3pv* S{tg 1po* )(n-vs )

V—L)%(plj+%p02}1V+S-(';)(n-(pLAI+%pvz)vs)d5

The surface velocity v for a moving blob of fluid is identical to the

fluid velocity v. When the term containing v = v is transferred to the

right side and the Gauss divergence theorem is used, we get the
energy balance in the following form
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V{)%(pfl +%pvz)dV= —V{)(V-(pfl +%pvz)v>iV
= [(v-q)av- I(V~[n-v])dV+ [(v-g)av

V() V(t) V(t)

Since the element of volume was completely arbitrary, we may now
remove the integral signs through the entire equation and obtain Eq.

11.1-7.
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12A.1 Unsteady-state heat conduction in an iron sphere
a. The thermal diffusivity of the sphere is given by Eq. 9.1-8:

yo K _ 30
pC, (436)(0.12)

=0.573 ft*> / hr

b. The center temperature is to be 128°F; hence

T, -T, 128-70
T,-T, 270-70

=0.29

Then, from Fig. 12.1-3, at/R? =0.1, and

2 1/24)
r=01 X )-01 (1/24)° =3.03x10%hrs=1.1s
o 0.573

c. By equating the dimensionless times, we get

ont oLt
R R;
or
o, =, —[=0.573] = |=0.287

d. The partial differential equation from which Fig. 12.1-3
was constructed is

o
L



12A.2 Comparison of the two slab solutions for short times
According to Figure 12.1-1, at at/b* =0.01 and y/b=0.9

=(0.46
T,-T,

where y is the distance from the mid-plane of the slab.

Next we use Fig. 4.1-1, which can be interpreted as a plot of
(T-Ty)/(T,—T,) vs y’/\JAat, where y’=b-y is the distance from
the wall. We then get

y _1(1-09)_1
4ot 2 1/at/bz 2

Then from Fig. 4.1-1 we find

T-T,
Tl”'To

= (.48

Hence the use of the combination of variables solution introduces an
error of about 4%. Smaller errors occur at smaller values of the

dimensionless time at/b?.



12A.3 Bonding with a thermosetting adhesive
The dimensionless temperature at the time of bonding is

T -To  160-20
T,-T, 220-20

=0.70

This occurs very nearly at a dimensionless temperature at/b> =0.6.
Hence the time required is

2 2
= (0.6)(%) - (0.6)(1%':—2)15) - 855

13



12A.4 Quenching of a steel billet
The thermal diffusivity of the steel billet is

Kk (25)(4.1365x107)

oC,  (7.7)(0.12)

o= =0.112 cm?2/s

The dimensionless time is then

at _ (0.112)(5x 60)

"~ = . =0.145
R*  (6x2.54)

From Fig. 12.1-2, the dimensionless center-line temperature is about
0.31. Therefore

Ta=To g3
T,-T,

We can now solve for the centerline temperature

T, = 0.31(T1 - To) + T, =0.31(200 - 1000) + 1000 = 750°F






12A.6 Forced convection from a sphere in creeping flow
a. The dimensions of the quantities in Eq. 12.4-34 can be
obtained from the table on pp. 872-876, thus:

mr’ ML
Ql=l— D=l T[T k=lor
Re[=] dimensionless Pr[=] dimensionless

To check for dimensional consistency:

MI? ML
=1L.T -=—=
$3 =] 3T

b. We now write Eq. 12.4-34 in terms of the Péclet number:
A N3
—( D2 k) (37)" [ Du.pC,
Q—(”D )(To _T”)(EJIZZWBT(%) K
A N3
37[)2/3 Dv,,opC
=(aD)(T, - T.. k{( P
( 0 ) 27/3 F(%) k

In this form, the viscosity does not appear in the expression. We now
fill in the numerical values, using c.g.s. units throughout:

_ B 4.462 (0.1)(1.0)(0.9)(0.45)\*
Q=7(0-1)(50)(3x10 )[(5.04)(0.89297) 3% 10 )

=0.0240 cal/s
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12B.2 Two-dimensional forced convection with a line heat source
a. The energy equation simplifies to

2
pvax 8—T = k—a—z where v, =7, a constant

ox oy’

The boundary conditions have the following meanings:

Eq. 12B.2-1: Far from the wire, the temperature of the

fluid is unchanged from its value, T.,, for x <0

Eq. 12B.2-2: The approaching fluid is all at the temperature

. T.--that is, there is no heat conduction upstream
Eq. 12B.2-3: The entering into the fluid from the wire must
appear somewhere in the cross-section
In addition, we need a statement that T(x,y)=T(x,-y)--that is,
symmetry about the plane y =0, which contains the wire.

b. The postulated solution in Eq. 12B.2-4 states that the
temperature profile at any value of x will be geometrically similar to
the profile at any other value of x. When this expression for T is
inserted into Eq. 12B.2-3 we get:

pC, o, [ f(x)3(m)] 8(x)dn =Q/L

When the integral on 7 is evaluated, it is found that f(x)6(x)=C,, a

constant.

| When the expression in Eq. 12B.2-4 is inserted into the energy
equation, we get

82
%’

%798?[6(1x)g( 6(yx)ﬂ= 88;2 [6<1x>g( 6(yx>ﬂ’ o

0 [__1_@ n flé:flé]_ldzg_l_

| 2 dx® 8%dndx| odn’ o’

%2 [f(x)g(n)] = =5 [f(x)3(n)} or

Multiplication by §° then gives Eq. 12B.2-5.
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- ¢. When the quantity in brackets in Eq. 12B.2-5 is set equal to
2, we get a first-order separable equation for &(x)--the thermal
boundary-layer thickness--which is integrated from O to x to give

d(x)=+/4ax/v, . The main reason for setting the bracketed quantity

equal to 2 is that the solution to the equation for g(n) comes out to be
a little simpler.

d. The equation for g(7) can be written as

dfdg)_ _,d
dn(dn)" 2dn(ng)

which has the solution

dg
=-2ng+C
in g +L,

Since g(7) is symmetric about n=0, we know that dg/dn=0 at

n=0; therefore, this last equation tells us that C,. A further
integration leads to a Gaussian function

g= Cye™™
We do not evaluate C, but instead "absorb" into the constant C;.

e. We can now evaluate C; by substituting the postulated
temperature profile into Eq. 12B.2-3 to get

pC,0,Ci[Tg(mAn=Q/L  or  pC,u,C [ e dn=Q/L

which gives
c__Qn
b pCom

Which then completes the determination of the temperature
distribution in the wake of the wire. |
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12B.3 Heating of a wall (constant heat flux)
a. The equation to be solved for g, (y,f) is

aq, _q d%q,
ot y?

This is the same mathematical problem that is solved in Example
12.1-1, so that we can write down at once

with ¢,(y,0)=0, 4,(0,t) =gy, and g, (e,t)=0

Ty_ 2 (=

S e"”zdu
N R

To get the temperature we use Eq. 12.1-39

" TW%I%%Bd %}I i dudy
'k \/’\/—I N—J. e de—%ﬁmf;mf:/@e‘”dedu
k«/ﬁ\/_;«/—_ [u—\/%ﬂ}du
Z:[ 4at .[y/«ﬁﬂ zudu—% ;@e‘“zdu)

When the first integral is evaluated, we get Eq. 12B.3-1. In the above,
to get the second line, we made a change of variables and then
interchanged the order of integration; in the third line, we performed
the inner integration.

b. Some intermediate steps in showing that the partial
differential equation is satisfied: We write k(T —T)/q, = F — G. Then

\/' / . e V' /et 8 F_ 1 l/i__\/g oY’ 2ot
4mat 3y2 drat t \mt

an( ’ 1 l/f_)e-yz/wt; a‘;—z—g=(—2\/z+ /__}__ﬁ)e—yz/wt

ot 4rat t dy at \dzot t
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12B.4 Heat transfer from a wall to a falling film (short contact time
limit)
a. From Eq. 2.2-18, we get

0, =0, |1~ (%/8)" | = Vo[ 1 (1= (9/6))’
= 0, o | 1= 14 2(y/8) + (4/8)" | = 20, s (4/9)

this last expression is good in the vicinity of the wall, where the
quadratic term can be neglected.

b. Equation 12B.4-2 presupposes that the heat conduction in
the z direction can be neglected relative to the heat convection in the
z direction. In addition, laminar, nonrippling flow is assumed.

c. The fictitious boundary condition at an infinite distance
from the wall may be used instead of the boundary condition at a
distance é from the wall, since for short contact times the fluid is
heated over a very short distance y. Therefore the inifinite boundary
condition can be expected to be adequate.

d. Equation 12B.4-3 can be written as y(90/dz) = (3°0/dy’).

Next we have to convert the derivatives to derivatives with respect
to the dimensionless variable 7:

90 _dodn_doe y (_l)
dz dndz dni9Bz

90 _doon_do 1 82(-3:_@_(%) 1 )andz@( 1 JZ
oy dndy dni¥9Bz" oy* dn\dni9Bz)dy dn*\3/9Bz

When these relations are substituted into the partial differential

equation and use is made of the defining equation for 7 we get Eq.
12B.4-7.

e. When we set dO/dn=p, we get dp/dn+3n°*p =0, which is
first-order and separable, and the solution is given in the book. The
next integration gives

©=C [ e dn+C,

12—V



12B.5 Temperature in a slab with heat production
a. This problem is discussed on pp. 130-131 of the 2nd Edition
of Carslaw and Jaeger. The solution in dimensionless form can be

obtained from Eq. (7) on p. 130. We must first determine the

correspondence between their symbols and ours:

Cé&]J I K v x/1 K kt/I*> A,
' k at
BS&L b k T-T, n=% as—= g S,

p

Therefore the temperature rise as a function of position and time is

KT-Ty) _ 1(1_ 45— cos(ns %)m,.e—w)zn%)

Sob® 2 no(n+1)

b, The center-plane temperature is obtained by setting 7
equal to zero. The maximum of the center-plane temperature is then

Sob?
2k

max

T ox=Tp+

¢. According to the figure on p. 131 in Carslaw and Jaeger,
90% of the total temperature rise occurs at about 7=1, that is, at

about t =b*/a.
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12B.6 Forced convection in slow flow across a cylinder
a. First we have to determine the velocity component v,

from Eq. 12B.6-1 (here we let £ =7/R and measure 6 downstream
from the stagnation locus):

dy _v.sind 1
%= 5 =0 {(21115 1)+2 (52}

Then let £ =1+ n and, for small 7,, introduce the Taylor expansions

Iné =(&-1)+-=n+--=y/R+--- and —1/§2=—1+2n+---. Then we
may write

_0v,8in6

2v_sin @
'Ux__ 25 ...]z___._

SR

[4n+ y=By

Therefore, 8 =2v,_sin8/SR.
b. We identify the boundary-layer coordinates as x=0,

y=r-R, and z=2z. Then we recognize that h, =R and set h, =1.

Therefore we can get the heat loss from a length L of the cylinder as
follows, starting from Eq. 12.4-31:

o= Tt (s )(J eimeRac) "

31/3k(T —TN)L 20_\Y 23
313(B(3, 1)) k\(Duv. v)”*
Y YOSE (”DL)(T"—T”)(B)( v 'E)

31/3 (B(4 ! )2/3

22T () (”DL)(TO"T“)(%)(RZPI)W

Comparison of this result with the solution to part (b) given in the
text allows the constant C to be evaluated.

c. The boundary-layer thickness can be obtained from Eq.
12.4-29 as follows:
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. s
or 1 RS o |2v_ sin O

Or o~ |20 [gq? |20=S0p g
R R 2v°°sin6( ks )

(9P 1 0 — y3
_(RePr) \/sinO (IO sm@d@)

At the separation locus, 0 = 7, the integral is finite (accordmg to Eq.
12B.6-2) and the denominator in f is zero, so that f is infinite. Near
the stagnation locus, 6 =0, the numerator and denominator of f may
be expanded in Taylor series to give:

_(j(f 9—%93+---d9)v3-(j(f@(l—ffe%---)de)m

f= \/6—-}93+--- B \/5(1_%9%...)
1 Y3
= 7_(5.(1+%32 +...)(_§_93/2 _%%97/%(...)
Then in the limit as & — 0, this gives the stagnation value
V3
f=(3)

Numerical integration gives for 0 =

Nj=
Q

f=1.1981

To get the answers given in the book, we have to recognize that the
theta in the problem is being measured from the stagnatlon point at
0 = 7 to the separation point at 6 =0.

Note that for this flow, just as for the flow around the
sphere, the boundary layer thickness increases through finite values
to an infinite value at the separation locus.

[Note: Eq. 6.2.1 of Abramowitz and Stegun (NBS, Applied Math
Series, 55) is a convenient formula from which the integral from zero

to 37 can be calculated in terms of gamma functions, which are
tabulated.]
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12B.9 Non-Newtonian heat transfer with constant wall heat flux
(asymptotic solution for small axial distances)
For Newtonian fluids, Example 12.2-2, we wrote

e 1)

() )rommn i

2uL

=0

— Yz,max

¥
R

¥
R %R

|

where Egs. 2.3-18 and 19 have been used, as well as the definition -

y=R-r.
The analogous procedure for power-law fluids gives
(Yn)+1 (Yn)+1]
0, =vzmax|:1_(1) }zvzmax{l_(la_y')
’ R . R
i 2
= '()z max 1_1+(1+1)(1) _l(l+1)(l) _y_) +-.-.
L n R) 20\ n n/\R
v _ 2\ ¥
SN ERY )N (LA i W FY
e\ n R 2mL (Yn)+1\n R

This gives the formula for the v, that has to be used for power-law

fluids. The quantity v, , with dimensions of velocity, appears only in
the dimensionless parameter A.
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The boundary condition at n=0 gives C,=1. The boundary
condition at 7 =0, gives

And the éomplete solution (in dimensionless form) is

[Jeman [Teman-[le g [Te dn

O=1- = =
Jo e dn Joe™dn r(3)

The integral in the numerator cannot be integrated analytically.

f. The local wall heat flux (i.e., at any position z down the
wall) is

| ol o LTk To-T,
Yly=0 3yy=0 dn|,_, 9Bz (%) 3/9Bz

In taking the derivative, the Leibniz formula was used. Finally the
average heat flux at the wall is

k T T 1
Dyavg qu’ z= ;

nORTa

This is the result that is given in Eq. 12B.4-9.

—-0
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12€.1 Product solutions for unsteady heat conduction in solids
a. We begin by defining a dimensionless temperature
difference by

_T,-T(x,y,z,t)
T, -T,

A

in which T, is the initial temperature of the solid rectangular
parallelepiped, and T; is the imposed temperature on the surfaces of

the solid. Then the 3-dimensional heat conduction equation for the
solid is

oA _ [9°A 9°A %A
ot ox* 9z

If we now postulate a product solution
A(x,y,z,t)= X(x,t)Y(y,t)Z(z,1)

then we get

NXYZ) (d*(XYZ) J*(XYZ) dJ*(XYZ)
ot "“( o o | o )

Division by XYZ then gives

1 9(XYZ) 10*°X 10*Y 19°Z
L e E VRN R
XYZ ot Xox* Yoy Zoz

When the product on the left side is differentiated we get

10X 19Y 19z  (15°X 1Y 19°Z
Xt Yo Zot Xox* Yoy* ZozZ*

The first term on the left is a function of x and ¢, as is the first term on
the right. Similarly, the functional dependences of the second and

1217



third terms are the same. Therefore we postulate that these pairs of
terms can be equated to give:

X _ ., X Y _ azy 0Z  9°Z

T T T =

That is, we get three one-dimensional heat-conduction equations.
These can be solved according to the method of separation of
variables given in Ex. 12.1-2, and all of them have the same initial
conditions, and the same kinds of boundary conditions. Therefore,
when we combine the three solutions in the product form above we
get -

(2 Y (11(1 J}) ) ) e’ cos(m + %)nx/a)

m=0

g( ( 1)) n+ 2 2at/v? COS(?’l +%)7ty/bJ

(p+3)' et/ cos(p+ %)nz/c)

( 1)m+n+p

A8 R e DD
[cos(m +})mwx/al[cos(n +1)my/bllcos(p + 1) 7mz/c]
—[(m+%)2 a? +(n+%)2 / b2 +(p+%)2 /c2 ]n2at

e

This can be substituted into the differential equation to verify that the
latter can indeed be satisfied. Also, the satisfaction of the boundary
and initial conditions can be verified.

b . This and many other interesting and important product

solutions are discussed in Carslaw and Jaeger on pp. 33, 184, and -

227.
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12C.2 Heating of a semi-infinite slab with a variable thermal
conductivity

a. The heat conduction equation is, for variable k,

dor _ d(, dT A 00 J 00
pCP gy o"y(kg) or pCp—é—:koay((l BG))ByJ ‘or

00 7’0 ,d( _00
T%[W”’@(%ﬂ

In order to use Eq. 12C.2-2, we need to convert the derivatives:

8@_d<ban_d<b( yd6) d(I)( ndéj

ot dn ot dn\ 8*dt) dn\ & dt

90 _d® Jdn _dd 1 9’0 d*® 1
and —=———=

dy dnoy dns dy* dn®é

b. We now substitute the above derivatives into the heat
conduction equation to get (after multiplication by §%)

_dd)( 5d6) o d[dd + g2
dn dt Odn dn dn

When this is integrated over 7 from 0 to 1, we get

1| d dé d
—I"{%(’@) ]dn o °°dn(dn s )

Performing the integrations we finally end up with

dd _ dd dd
-nd ddn-5— d—
n |0+J. n 7t (drl B dﬂ)

which is equivalent to Egs. 12C.2-3 to 5.
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c. We now use ®=1-3n+1n° which is a good choice for
the approximate temperature profile, since it gives ®(0)=1,
®(1) =0, and ®’(1) =0 in agreement with our intuition.

We then get M and N by substitution into Egs. 12C.2-4 and 5:

M= [iodn=[(1-3n+3n)dn =3

o . dd 1
N=(zﬁ+ﬁd’aﬁ)o=[(—%+%nz)+ﬂ<1—%n+%n3>(—%+%n2>]l

-3(1+5)

1

This leads to the differential equation for the boundary layer
thickness:

dé
%5‘61? =3(1+B),

which when integrated gives

The time-dependent temperature distribution is then

r-1, 3y ), vy Y
T, =T 8\ V8(1+B)at ) 2\ y/8(1+B)at

The heat flux at y = 0 is finally

k(T -Ty)d®| _3 KT, -T,)
40 8(t) dnl,_, 2+/8(1+B)at

in which k is given by Eq. 12C.2-1.
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12C.3 Heat conduction with phase change (the Neumann-Stefan
problem)

a. Using the definition of the dimensionless temperature
differences in Eqs. 12C.3-1 and 2, we may write the heat conduction
equations for the solid and liquid phases as follows:

00 %0 00 2’0

Solid: S=—q 8 Liquid: L-q L

U T 92 q ot 92
The initial and boundary conditions are:
I C.: at £=0, e, =1
B.C. 1 at z=0, ©,=0
B.C.2 at z=oo, 0,=1
B.C. 3 at z=Z7Z(t), 0, =0,=0,

AH

B. C. 4: at z=2Z(t), kags—ka@L— PRz dz

b. The assumed forms for the solution are chosen because of -

their similarity to other one-dimensional heat-flow problems in a
semi-infinite region:

. Z
Solid: ©4 =C, +C,erf i
. . Z Z
qumd: @L =C3 +C4erfm=(c3 +C4)—C4(1—erfm)

=(C;3 +C,)~Cyerfc «/:‘at

The last form for the liquid-phase temperature equation will turn out
to be somewhat more convenient to use.

c. When we apply B. C. 1, we get C, =0. Using B. C. 2, we get

C;+C, =1, we not that the initial condition is automatically
satisfied. Then B. C. 3 gives

Z(t) 0
f =1-C,erfc——%=0
C,er Aol qserfc Aol m
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The only way that this equation can be satisfied, is if Z(t)o<~/t. We |

elect to write, then, Z(t)=A+v4at where A is a dimensionless
constant that has yet to be determined.
Finally we apply B. C. 4 to get

2 2 1 2 2 -1
kC. 2_¢°Z /4at(___)_k —C. )52 /4at(___)
2 77 1) MG Taar
PAH ¢ 1
- Ao ——
T, ~T, ot
or
AH Ao 7
ke (C,~C,) =2t (*)
Tl “To

Next we apply that part of B. C. 3 that deals with the
dimensionless melting temperature:

C,erfA =0©,, and 1-CyerfcA =0,
whence
® 1-0©
—_ C = m_ _ m * %
G2 -Gy erfA erfcA )

Combining (*) and (**) and rearranging, we get

On 1-0, _ .
erfA  erfcd VmAde

This gives A in terms of A and ©,,. Then we get for the temperature

erf(z/4at)
erfd

erfc(z/4at)

Solid: ©¢; =0, o)

; Liquid: ©,=1-(1-0,)

Finally, we have Z(t)=A+v4at, where A is now a known function of
Aand ©,,.
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12C.4 Viscous heating in oscillatory flow

a. The starting point for this problem is Eq. 4.1-44, and the
development up to and including Eq. 4.1-50 can be taken over here.
B.C. 1 is also valid, but now B.C. 2 must read: at y=b, v° =0. When
Eq. 4.1-50 is solved for these boundary conditions, we get

v°(&) _sinhc(1-¢)
v,  sinhc

where ¢ =+/iwb?/v =1Job?/2v(1+i)=a(1+i) and & =x/b. The above
expression for v°(&) can now be substituted into Eq. 4.1-48 to get Eq.

12C.4-1.
b. Next we get the dissipation function, which for this

problem is @, = u(dv,/dx)*. The derivative of the velocity is

ov dv® ;
z _ 9'{ 1wt
ox { dx ¢ }

and its square is obtained by using the relation (which should be
proven) R{u}R{v} = 2[R{uv}+ R{uv*}], where u and v are complex
numbers and the asterisk indicates a complex conjugate:

2 o 2 o o ¥
( 802 ) _ l R _4_’(_)_ eziwt + dv do
ox 2 dx dx \ dx
Next we get the time average of the above function; the first term

vanishes because of the exponential (which contains sine and cosine
functions) and only the second term survives:

*

(802)2_ 1 (do®\(dv®) fl_ziz__?gccoshc(l—é)
ox ) 2b* dx )\ dx dx b  sinhc

from part (2). Then the time averaged dissipation function is:
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1( v, )?( ccoshe(1-&))( ccoshe(1- &)Y
(8x) _2(—5) ( sinh ¢ )( sinh ¢ )
l(ﬁjz (cc*)(coshe(1-&))(coshe(1-&£))*

b smhc)(smhc) |
1(0) |[cosh® a(1- €)cos? a(1- &) +sinh? a(1- £)sin® a(1- £)|

b sinh? acos? a + cosh? asin® a

I\)

To get the third line of the above we have used the identity
cosha(1+i)(1-&)=cosha(1-¢&)cosa(l- &) +isinha(l- &)sina(l- &)

which should be verified. Then, finally, use sin?0+cos’0=1 and
cosh?® @ —sinh” 6 =1 to simplify the above expression for ®@,, thus:

o[ e0) (5

the last expression being a limiting expression for very large
frequencies.

c¢. To get the time averaged temperature distribution, we use
Eq. 12C.4-4, thus

dzT__,ubza (Uo) cos” a(1- <§)+smh2 a(1-¢&)
ek b sin” 2 + sinh? a

Then introducing a new variable n=1-& we write

d*T =_,uv§ cos® an +sinh? an
d(an)’ k \ sin’a+sinh’a

Integration once then gives

dT _ pvg (sinZan+sinhZan) L C
d(an) 4k \ sin’a+sinh®a !
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and a further integration then yields

2( 2 )

= Myuy( sin”an+sinh®an

T=- +Can+C
4k( sinza+sinh2a) R

The constants of integration may then be determined, so that we get
finally:

2

T~TO:&[(1-§)_

sin? g +sinh?a

sin” a(1- &) +sinh® a(1- &)
4k

For the high-frequency limit, we get

T-T,= %%[(1—(2“5)— E(1-e)]

(Note: The solution given here for finding the dissipation function
does not use Eq. 12C.4-1 and is hence somewhat easier than the
method suggested in the text. It does, however, require somewhat
more familiarity with doing manipulations with complex variables.)
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12C.5 Solar Heat Penetration

The basis for this problem was Eq. 5-40, M. N. Ozisik, Heat Conduction, 2cnd
Ed. , Wiley 1993 - - - p.206. The temperature profile is re-expressed as

oo LMD = T(0)
Tmax (O) - T(oo)

and should have been written as

T* = exp[— y* @ / 2a]- cos[wt — |y’ / 2a]
Jy/J_
7=k

The thermal properties are taken from (Rohsenow, Hartnett and Cho, Handbook of Heat
Transfer, McGraw-Hill, Third Ed., p.2.68, 1998):

exp[—7 ] cos[wt — y a)/4a;7 ldn

Density, kg/m”"3 Thermal conductivity, Specific heat,
W/m,K : J/kgK
1515 0.027 800
It follows that
2 S 2
_ 0.027 .m-W 3600 0ules _802.10°™
800-1515  joule— W — hr hr

a) For the assumption of a sinusoidal input with a 24 hour period
T(0,t) = asin(nw t)]
Show that the mean temperature, in the absence of day-to-day variation is just a, , and
for a periodicity of 24 hrs
® t=mt/12hrs;0=n/12hrs

The amplitude of the fluctuations at depth y relative to those at the surface, “A.y” is just

A =exp (—y,/Qa)/Za)exp (-40.4-y/m)

Then at a depth of 10 cm the relative amplitude
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A = exp(-4.04) = 0.0176

re
as required.

b) The transient term is difficult to evaluate, but this is of no practical importance. The
periodically steady oscillations are about the initial temperature of zero, and therefore all
transients must be of lesser magnitude than these periodic excursions. Since the
excursions are already negligible there is no need to examine this problem further.

¢) Only the slowest component of the oscillations need be considered as the others

damp. out even faster.
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12C.6 Heat transfer in a falling non-Newtonian film
For the non-Newtonian falling film problem, the velocity
distribution has been found in Problem 8B.1:

In (Yn)+1 (yn)+1
0, :(pg5) o 1—(-x_) =0, max ]_—-(i)
m ) (IYn)+1 J ' 5

- This can be rewritten in terms of the coordinate y, which is the
distance from the solid surface

(Yn)+1
Yy
U2 = Uz max I: ( 5) jl

When this expression is expanded in a Taylor series, we get

1 y) 1(1 1 y)z
= 1-1 1 -— == +-
e R R O ) B Gk
For positions very close to the wall, this can be approximafed by

1 y
= —+1l <
vz Z)z,max(n + )( 6)

Inserting the expression for the maximum velocity, we get

1/n
0, {&&é) y

m

which simplifies to Eq. 12B.4-1 for a Newtonian fluid.
Therefore the solution in Problem 12B.4-1 may be taken over

for a power-law fluid by replacing = ,uk/ pzép go = (k/ pép )(u /pg5)
(just below Eq. 12B.4-3) by B=(k/pC, )(m/pg5)"". The quantity B

enters into Eq. 12B.4-8 via the variable 1, and explicitly in Eq. 12B.4-
9.
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12D.1 Unsteady-state heating of a slab (Laplace-transform method)

a. We take the Laplace transform of Eq. 12.1-14 along with
the initial conditions and boundary conditions given in Egs. 12.1-15
and 16. This gives:

— d*e
®-1=
p an

with 0(x1)=0

This second-order, nonhomogeneous, ordinary differential equation
can be solved by getting the complementary function (from Eq. C.1-
4a) and the particular integral (by trial and error); this gives

© =C, cosh,/pn+C, sinh\/ErHl
p

When the constants are evaluated using the boundary conditions, we
find that

_ 1 coshypn
6=~ S5WPT
p pcosh.p

Taking the inverse Laplace transform, we get

o [1i-T =1_£_1{cosh\/§n}
T,-T, pcosh\f;;
_ Zi(—l)" cos[(111+%)m7]
n=0 (Tl+§)7l'

exp[(n +1)’ 72 r]

The inversion was performed by using Eq. (40) on p. 259 of Erdély, W.
Magnus, F. Oberhettinger, and F. G. Tricomi Tables of Integral
Transforms, McGraw-Hill, New York (1954), with @ set equal to
zero. Unfortunately, this formula has two misprints in it: the x in the
denominator of the first term should be I, and the factor 2p in front of
the summation sign should be 27. The inversion can also be
performed by using the complex inversion theorem, as explained in
Carslaw and Jaeger (see reference at the bottom of p. 403).
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b. The expression for the transformed function © (in (2)) can
also be written in terms of exponentials. Then we expand part of the
denominator in a binomial expansion to get:

VP pmPn _1 1

_ 1 o
O=—- e~ VP(=n) | =p(1+) _1)* g 2P
p p(eﬁwe‘ﬁ) p P( )20( )
= _:!'_ - 1 i (_1)" en/;;(ZnH—n) _ _:_l_ i(_l)n e—ﬁ(2n+l+n)
P Pn=0 P n=0

The inverse Laplace transform is then

T,-T < n 2n+l-n n 2n+1+7n
0=-1 =1- ) (-1) erfc—— - ) (-1) erfc——
T,-T, Z{,( ) V4T Zf)( ) V4T

1

This can be rewritten in terms of the dimensionless temperature of
Example 12.1-1 thus:

T-T > n 2n+l-n & n 2n+1+n
P = 0 =Y (-1)"erfc —F——"+ ¥ (-1)" erfc ————
T.-T, Zf)( )" erfc T Za( )" erfc NI

Here, the dimensionless temperature @ has been introduced to avoid
confusion with the dimensionless temperature ® used in Example
12.1-2. -

c. To compare the results of Examples 12.1-1 and 2, we
replace the position variable y of Example 12.1-1 by x (so that it will
not be confused with the y of Exammple 12.1-2). Then the first few
terms of the final result in (b) are, written in terms of x =b -y, are:

T-T, L-[1-(0)] 3-[1-(x0)]

= erf — erf
T,-T, e \/4at/b2 e 4 at/b?

1+[1-(x/b)] 3+[1-(x/b)]
\/4at/b2 —erfc .4at/b2 V+----erfc e

+---

the subsequent terms being smaller.
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12D.2 The Graetz-Nusselt Problem
a. The partial differential equation to be solved is

R r\> |9T | 19( aT
¢ 1-| =| |[Z==kl-=|rZ
P ”vz’max[ (R) ]82 [r c9r(r 8rﬂ

When this is put in nondimensional form, using the dimensionless
quantities defined in Eq. 12D.2-1, the following equation is obtained
for the temperature distribution ©(&,{):

9 . . . M
(5£J with ©(¢,0)=1,0(1,0)=0,and 5/ o

00 1 0
¢(€)gg=ga—§

We now try the method of separation of variables with the
dimensionless temperature given by ©(&,{) = X(£)Z({). This gives,
after division by XZ

1dZ 11 d(ng)

Zdf X Ede\"dE

Since the left side is a function of { alone, and the right side is a
function of £ alone, both sides have to equal a constant. We choose

this constant to be — . Hence we get two ordinary differential
equations: |

dZ 2 | 2
d_Cz_ﬂ Z or Z(C)ocexp(—ﬂ C)

and

%%Lg%} +B%9X =0 with X(1)=0and X’(0)=0

This last equation (with boundary conditions) is a boundary-value

problem of the Sturm-Liouville type. Therefore, we know that there
will be an infinite number of values of eigenvalues 7 and an infinite
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number of eigenfunctions X;(£). We also know that the
eigenfunctions are orthogonal on the range (0,1) with respect to the
weight function ¢&. Hence the solution must have the form:

- . [ X, p&de
(&, =Y AX, -B? th A, =%4——
(£,0) 2 (&)exp(-B7¢)  wi A ez

The expression for A; is obtained by using the requirement that
©(£,0)=1, and making use of the orthogonality relations for the

eigenfunctions.
b. We write for the Newtonian fluid

B(E) =0, /(0,) =0, (1~ &) J(0,) = 2(1- 2)

so that Eq. 12D.2-3 becomes:

1d(, dx, 21 £2Vy () _ '(0) =
E&Z(%‘E)“ﬁi (1-£%)X,=0 with X(1)=0and X’(0)=0

This second-order equation will have two solutions, but one of them
will become infinite at £ =0 and is therefore unacceptable. The
remaining solution we write as a power series

Xi(é)z zbijgj (*)
j=0
When this is substituted into the differential equation, we get
3 2,62 + 282 (1- 6%) 3 6,80 =0
j=0 j=0

By collecting equal powers of £ we get the recursion relation for the
coefficients:

bij = (Zﬁi2 / j 2 )(bi, j-4‘ - bi, j-z) (*)
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The b, are arbitrarily chosen to be unity, and the higher coefficients

are obtained from the equation immediately above. The values of 3}
are then obtained from the two equations marked with (*), along

with the boundary condition at £ = 1, which requires that )}b; =0.
- =0

This involves solving an infinite order algebraic equation by trial and
error--clearly a tedious process. Methods are, however, available to
get the eigenvalues B} for small and large values of i. For small
values there is the method of Stodola and Vianello, and for large
values there is the WKB (Wentzel-Kramers-Brioullin) method. The
following eigenvalues have been obtained:

i 1 2 3 4 5 6
237 7.314 44.61 113.9 2151 348.4 513.8

See B. C. Lyche and R. B. Bird, Chem. Eng. Sci., 6, 35-41 (1956), for

the first three values both for Newtonian and power-law fluids; the
higher values are obtained from the WKB method as 27 = (4i - %)*.
Further discussions and literature references for non-Newtonian
flow may be found in the 1st edition (Chapter 5) and the 2nd edition
(Chapter 6) of R. B. Bird, R. C. Armstrong, and O. Hassager,

Dynamics of Polymeric Ligquids, Vol. 1, Fluid Mechanics (published by
Wiley-Interscience).
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12D.3 The Graetz-Nusselt problem (asymptotic solution for large z)
a. Using the definition of the dimensionless temperature as
given in Problem 12D.2-2, we can write

aT

k(T,-T,) 00 k(T,-T,) 00
qO:qu=R_"k§ ( 1 0) I - ( b 0)

r=R o R aé '5:1— R®b aé £=1

b. For very large z,

00

zA

eXP(-BEC )= A % . exp(~p;¢)

Furthermore, from the definition of the bulk temperature in Eq. 10.8-
33 we find using Egs. 12D.2-2 and 3

J¢ 6 6 1 kit 2 1
= oce 210¢@éd4==z§A,- exp(-B7¢)[ 9X,EdE
e menl 0 5
- 25 A,exp(-i¢) 5 (5—?)
1 dX 1 dX
=—2§Ai exp(—,Bf{,’)B2 —2A exp( B; C)ﬁ_fd_élg_l

the very last expression being valid for large z. When these results
are substituted into the result in (a), we get

e gt

This is the same as Eq. 12D.3-3 in the text. (see also p. 217 of R. B.
Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric
Liquids, Vol. 1, Fluid Dynamics, Wiley-Interscience, New York, 2nd
edition (1987)). |
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12D.4 The Graetz-Nusselt problem (asymptotic expression for
small z)
a. When Eq. 10.8-12 is written in terms of the dimensionless
variables ® =(T, -T)/(T, -T,), £=r/R,and { =z/R, it becomes

00 19,00
zmax(1 5) g———(é—gg)

df REIg
Next we introduce the three assumptions used for small z in
Example 12.2-2, as well as the dimensionless quantities in Eq. 1214 1.
This gives for the partial differential equation for ©(o, 5) the
following problem statement:

0 %0
No— =
o  Jdot

with ©(c,0)=0, ©(0,8)=1, O(cs,&)=0

We use the method of combination of independent variables, by

introducing the new independent variable: n=(No?/9¢)"?. Then the
transformation of the derivatives proceeds as follows:

(8@) _d@(an) _d@[NG3)V3(__1_)C—4/3___77_@
o), dn\d¢), dn{ 9 3 3¢ dn

(a@) =d®(8n) _do(N\" _den . (9% =d2®(_7l)2

do); dn\da); dn\9¢ “dno 0702C dn*\ o
When these substitutions are made into the partial differential
equation in dimensionless form, we get (after some simplification)

the following ordinary differential equation and boundary
conditions for ©(n)

d2€~) o3 2 40

n =0 with ©(0)=1and O(e)=0
an* dn
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To solve this equation, we set ®(7n)=4d0/dn, and obtain a separable
first-order differential equation for &:

Z—cg =-3n*®  with solution Z—: =0=C, exp(— n3)

This first-order separable equation can be integrated to give

0=C fon exp(—"ﬁ3 )dﬁ +C,

The lower limit of the integral has been chosen arbitrarily.
Application of the boundary conditions enables us to determine the
constants of integration. The final solution is then

exp( 3)dn J‘wexp( 3)1ﬁ= 1
fyexp(-mm [ exp(-77pm T(5)

where Eq. C.4-3 has been used to write the denominator integral in
terms of a gamma function. The integral in the numerator cannot be
evaluated analytically.

b. To get the wall heat flux, we use Fourier's law of heat
conduction:

0=1-

Jyexo(~71° |

aT
her ="K

Y3

k N J0
=——(T,-T,)| —=| —

R °)(9c) nl,

Into this expression we substitute the final result of (a), to obtain
(with the help of the Leibniz formula for differentiating an integral,
given in Eq. C.3-2)

=51 8- reter)

k 00 k 00
= ‘_( 17 )'—“

T To) 52 R 0790|420
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3
ke 1 4(02)1{.5
TR (T T°)91/3F(%) a z]
. 3
—_ E _ 1 D<02>p.cl"u.2
_+R(T1 T°)91/3I‘(§—) r k2
k 1 D\"?
| ="§(T1 —T0)91/3F(%)(RePr—z—)

c. In (a) we can write the velocity profile for the Newtonian
fluid (or any generalized Newtonian fluid) as

v, =(v,)¢(&)  with ¢(1)=0  (no-slip condition)

That is, for the Newtonian fluid ¢(&)=2(1-&?). Then when we
switched to the dimensionless coordinate ¢ measured from the wall,
the velocity profile can been written as

v, ={v,)w(c) with w(0)=0 (no-slip condition)
Then, the velocity profile in the immediate vicinity of the wall is
0, = (0, )¥'(0)0+= (0, )¢"(1)o+--

and, for the Newtonian fluid,

v, = —(vz)[(d/d§)2(1 - 52)]|§=1 o= 4(v, o+

Hence, the above solution in (4) can be modified for the generalized
Newtonian fluid by replacing N = 4(v, )R/a by

Nz(_zg J_<__>13
g=1) &

dg
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12D.5 The Graetz problem for flow between parallel plates

a. Let the flow take place in the positive z direction between
plates at x =+B. Then the partial differential boundary equation for
T(x,z) and the boundary conditions are:

2

pvaz(x)% _ k% with  T(x,0)=T, T(+B,z)=T,

We can, if we wish, replace the boundary condition at x =-B by a
boundary condition dT/dx =0 at x =0, because of the fact that we
know that the distribution of temperature about the center plane will
be symmetric. Then we solve the problem for positive x only,
knowing that the full problem must be symmetric about the plane
x =0. We now introduce the dimensionless variables

_T-T, _v,(x) _x __oz
@(§/C)_ Tl _TO ¢(§)— <Uz> g" B C ('UZ>B2
Then the problem may be reformulated as

0 00 . _ a9
¢(é‘)52—3§—2— with .9(5,0)_1, e(1,¢)=0, %, =0

We anticipate that the method of separation of variables will be
appropriate, and write 6(&,{)=X(&)Z({). When this is substituted
into the equation above, we get (after division by XZ)

1dzZ _ 1 &°X _
Zd¢ X¢ dE?

_ﬁZ

where we have introduced the separation constant —3*. Hence we
get two ordinary differential equations

Z_? =-B%Z whence  Z({) e eXp(-ﬂzg)
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2
% +B26X =0 with X(1)=0 and X’(0)=0

Since this last equation with its boundary conditions is a boundary-
value problem of the Sturm-Liouville type, there will be an infinite

number of values of the eigenvalues 87 and an infinite number of
eigenfunctions X;(&). Furthermore, it is known that the eigen-
functions are orthogonal on the range (0,1) with respect to the

weight function ¢(&). Therefore, the dimensionless temperature
profiles must have the form:

- . X, (£)o(&)dE
0(¢,8) =X AX(E)exp(-B7L) ) with A; ==— ,
(£:9) Z‘{ | (£)e p( ) joxf(g)dé

The expression for the A; is obtained by using the requirement that
©(£,0)=1 and using the orthogonality relations for the eigen-
functions X;(&).

It remains to find the eigenfunctions X;(£) and the eigen-

values B7. This has to be done by solving the equation for X;(£) by a

power-series technique. It is a tedious process. The results are given
in the Handbook of Heat Transfer, by Rohsenow, Hartnett, and Cho,
cited in a footnote in Table 12D.2 on p. 404.

b. In the limit of very large {, only one term in the
summation in (*) is needed, that is, we need only X,(&) and B;. To

get the heat flux into the wall at large distances downstream, we
need to find

T _HT =Ty (9919 ]
qo = +k .y B o, where 0, =

Tb ‘-TO
Tl _TO

and T, is the bulk fluid temperature.
For very large (,
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00
— A
?I d

exp( B2l)=A eXP(—ﬂfC)

1d§

5

The bulk temperature is, for very large { obtained as follows:

@b(g)zf}z’zif 5 A, exp(-7L) X ¢
- —gA,- exp(-B2¢ )I;ﬂ—lg%df
=-§Aiexp( B ‘:)ﬁlz ii‘ :
0 exp(—ﬂfc)ﬁ%%;-f‘l exp(~Fi ‘:)El?%g-l

Substituting the last two results into the expression for the heat flux,
we find

k(T,-T
o = ( b)ﬁl

In terms of the Nusselt number, this result may be written as

Nu - 4B __ 44,B

— 2 _
" RT,-T)) = 4% =7.541

which is the result cited in Eq. (F) in Table 14.2-2.
¢. For the limiting case of very small values of z, we start
with the same equation used in part (a) for T(x,z):

(0L = g2 L with T(x,0)=T,, T(+B,z)="T,

Since we are concerned only with the temperature change in the
immediate vicinity of the wall, it is convenient to change to a new
coordinate y = B-x and to expand the velocity in powers of y thus:

i2-40



y y
=2 J - g
vz,max B 3<vz > B

where we have used the result from 2B.3(b); this truncated
expression is valid in the vicinity of the wall for small values of z.
The energy equation for T(y,z) can then be written as

or _ 9°T :
3(02)%-5; oSy with T(,0)=T, T0,2)=To, T(=2) =T,
The last boundary condition is sufficiently good for small values of z,
since taking the center plane as being at an infinite distance from the
wall will not change the temperature distribution significantly. We
now introduce the following dimensionless quantities:

z N = 3<UZ >B
B a

Then the differential equation for ©(n,{) and the boundary condi-
tions are:

00 9’0
—_— T —— VV. h @ , =0, @ , . 1, @ oo, — O

We now seek a solution by the method of combination of variables,
using the combined variable y = (Nn?®/9¢)"°. This is possible since the
first and third boundary conditions both state that the dimensionless

temperature is zero. We are then led to the ordinary differential
equation (for the details, see the solution to Problem 12D.4)

d%e , dO :
- = =0 th ©(0)=1 and O(x)=0
AR A wi (0) (=)

for which the solution is
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0= f(l%—j'[: exp(—553 )d)?

To get the wall heat flux, we use Fourier's law

50 = kL _ KT -Ty) 06| =+k(T1—T0)(_N_)1/3£Q
W, B dn|,, B \9¢) ox

B Y3
w;B_T_)(ﬁ) (Dexp(~2°)

k(TOB— Tl)( N )1/3 1

x=0

=+

The above result can be put in the form of a Nusselt number as
follows:

4hB_ _ 49,B  _  4q,B
k  k(T,-T,) k(T,-T,)

- 4(%)% SORR 353??93)% e
__ 4 ((Z)Z>BJ]’/3
(3)°T($)\ 2B

This is in agreement with Eq. (C) of Table 14.2-2. The replacement of
the bulk temperature by the entrance temperature in the first line is
appropriate for the entry region, inasmuch as heat has had the
opportunity to penetrate only a negligible amount in that region.

Nu=
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12D.6 The constant wall heat flux problem for parallel plates
a. Application of §10.8 to parallel-plate system
For the laminar flow in the z direction between parallel
plates at x = 1B, the differential equation is

2 2
A x\" |dT , 9°T
Eo |1-[Z) [ZLox 2L
p ”vma"[ (B) ]82 ox?

We now introduce the dimensionless variables

kz

x = _KT-T,)
B pépvmasz

6 =
q0B

e(¢,¢)

When the differential equation is multiplied by B/g,, the above
differential equation can be rewritten as |

' 00 9’0 |
1- 2\YY _ * %
with the boundary conditions:
Jo
B.C. 1: =V, —
C at £=0 7z 0
00
B.C. 2: t ¢ =41, —=1
at £=+ Y
B.C. 3: at §=0, =0

We now seek a solution valid for large downstream distance, and try
a solution of the form

O(&,£)=Col +¥(¢) (™

Since this function cannot satisfy B. C. 3, we replace the latter by B.
C. 4

Condition 4:  atany planez, 2zWgq, = j;v fBB oC, (T - T, )v,dxdy
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or, in dimensionless variables
at any plane (, Czﬁ@(’g’,{)(l—éjz)d«f
When the trial function in (*) is substituted into (**), we get

_d*y

(1‘52)‘30-;@2‘

Integration of this equation gives

a¥

2z =Cle-8)ve

| Further integration gives

C¥=G(£E7 - HEN)+CE+G

so that

6(£,)=Cof +Co(387 - H¢*)+CiE+ G,

B. C. 1 leads to C, =0. Furthermore, B. C. 2, with the help of (***),
gives C, = 2. Finally Condition 4 leads to:

C=[[30+3(3€7 - %&*)+ G, |(1-£7)ag
from which we get C, = —35;. Therefore, finally
0(5,0) =45 +3(82-4¢")- %

Then the bulk temperature as a function of downstream distance is
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Jo [T(x,2)- T, Jo, (x)dx mﬁf@éC@ £2)ds _ q,B
Jo v (x)dx koo [(1-¢2)de k

and the wall temperature as a function of downstream distance is

T,-T,=

(3¢)

To-T,= ( C+3(1-1)-2)= q°( £+17)

k
Therefore
T, = 17 qoB or Nu= 4q,B ___140
35 k k(Ty-T,) 17

in agreement with Eq. (L) of Table 14.2-2 (note the definition of Nu in
the table title!).

b. For very small values of z the velocity distribution the
linear portion very near the wall is the only part of the distribution
that is important; if we let y be the distance from the wall at x=B,
we have

which serves to define v,. Then the first equation in (2) becomes

o LT _ o OT o LT 10°T
"B o °Baz  ydy?

Aside from the replacement of R by B, these equations are identical
to Egs. 12.2-13 and 14, and they have the same boundary conditions.
Therefore, the remainder of Example 12.2-2 is valid for the slit flow
(with the replacement of R by B).

When 71=0, we also have y =0, and Eq. 12.2-24 gives for the
difference between the wall and bulk temperatures

|2-45



T,-T, %941 39 /3 oz
(oB/k) ri3) r( )i[v; r(3)V(v.)B’

inasmuch as the bulk temperature is virtually the same as the
entrance temperature, the heat having penetrated to only a very
small distance into the fluid. Then the Nusselt number is

4hB_ 4q,B  4I(3),/(v,)B?

Nu=2"2 2 -
Tk TKT,-T) BV

in agreement with Eq. (H) of Table 14.2-2.
¢. The slit analogs of Egs. 10.8-12 and 19 are

W\ 2 2 2
A X 3T__ Q_I_ g2 299__ J°0
g C”vz'ma"[l (B) }&'z ko or (1-8)5=5g

In the second equation we have introduced the dimensionless
variables

_T-T, _x _ z

B? k

p zmax

From §10.8 we know that the asymptotic solution for large
downstream distances is

6.(£,0)=3¢+3(&*-3¢")-%
The compléte solution is assumed to be of the following form

O(£,0)=0.(£,0)-0,(6.0)

Substituting this into the partial differential equation above tells us
that the time-decaying function ©,(&, {) must satisfy the equation
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99, _ 9’0,
o9&

(1-¢°)

with the following boundary conditions:

00
B.C.1: at&=0, 4_0
at & o
00
B.C. 2 t &£=1, —4 -9
at & o
B.C.3: at(¢=0, 0,=0_(£,0)

We try a solution by the method of separation of variables, letting
©,(&,8)=X(&)Z(£). The functions X and Z must then satisfy the
following ordinary differential equations

az ’x N _
—d-c-..—cz E§—2+c(1-§)x-o (%)

where —¢? is the separation constant. We then expect to have a
complete solution of the form

Q_(_{t.f\=ﬂ_’ (F.f\—%R.,pxn{—J%/ﬂX_{,ﬂ

:i' 2

where

o _he (e 0[X(e))1-£2)ae
KO-

Therefore, the problem is reduced to one of finding the
eigenfunctions X; (&) of (****), and then getting the eigenvalues c,,
by applying the boundary condition at the wall £ =1.

The Nusselt number is shown in Fig. 14.2-1 over the entire
range, including the limiting cases given in parts (2) and (b).



12D.7 Asymptotic solution for small z for laminar tube flow with
constant heat flux

Exchange the order of integration in Eq. 12D.7-1,
recognizing that the area of integration is a triangular area bounded
by the lines ¥ = ¥, ¥ =X, and ¥ = . Then the inner integration can
be performed analytically:

e(n,4 %f_fwdx%/_j

= 3(/— - )?e‘73 X -xlax
r(3)=
Next rewrite the result as
O(n,A)== %/%[3 [[7e¥azg-3 x( [xeTdy-[i7e® d;?)]
3

The first integration can be performed analytically, the second
integral can be put in the form of a (complete) gamma function, and
the third integral can be written as an incomplete gamma function.

In the second integral, we set t=7%°, so that dt=3%’dy and dy =
14724t Then

Ze—x dZ J‘°°t1/3 —t( -2/3)dt 1 I“t(z/s) 1t gt = % (3)

A similar derivation can be performed for the indefinite integral.

Then we are led directly to Eq. 12.2-24.
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12D.8 Forced conduction heat transfer from a flat plate (thermal
boundary layer extends beyond the momentum boundary layer)
Evaluate the left side of Eq. 12.4-5 by using Eq. 12.4-8:

IT| _2K(T. - T)

ay y=0 6T

Next, evaluate the the integral on the right side of Eq. 12.4-5:

o A A i v, T-T
jo pCv,(T.. - T)dy =pC v (T.. - T,)8; fO(Tj(l' 7o Tgo]dm

©o

The dimensionless integral on the right side can now be split into two
parts to perform the integration, since the equation for the velocity
profile changes before we get to the upper limit:

j;/A(ZnTA—zn%A3 + n%A3)(1—217T +217 - n%)d’"h“
+.[11/A(1)(1'“ 210 +213 - 07 )dnT
HAT - BA+ TN - AT+ (- AT+ AT - A LA

_ -1 -2 -5 _
=3 -FA + 2N -55A + 5 A° = F(A)

Il
P~

We can now write Eq. 12.4-5 as

2k(T..-Ty) d A 20t dé
= =—pC T.-T,)0rF(A —=F(A)6; =L
5T dxp v°°( o 0) T ( ) or v ( ) T dx

0

Integration of this equation then gives J; =\/4(ax/v°° )/F(A). The
result in Eq. 12.4-12 is valid for A>1, so that the ratio of the two
boundary-layer thicknesses is

NS _ [Mox/v.) 37 (v;,o)_ 37
8 | F(A) 1260\ vx) \315PrF(A)

When this is squared, we get Eq. 12D.8-1.
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